Computer Science > Information Theory
[Submitted on 16 Jan 2023 (v1), last revised 1 Aug 2023 (this version, v2)]
Title:Machine Learning-Aided Efficient Decoding of Reed-Muller Subcodes
View PDFAbstract:Reed-Muller (RM) codes achieve the capacity of general binary-input memoryless symmetric channels and are conjectured to have a comparable performance to that of random codes in terms of scaling laws. However, such results are established assuming maximum-likelihood decoders for general code parameters. Also, RM codes only admit limited sets of rates. Efficient decoders such as successive cancellation list (SCL) decoder and recently-introduced recursive projection-aggregation (RPA) decoders are available for RM codes at finite lengths. In this paper, we focus on subcodes of RM codes with flexible rates. We first extend the RPA decoding algorithm to RM subcodes. To lower the complexity of our decoding algorithm, referred to as subRPA, we investigate different approaches to prune the projections. Next, we derive the soft-decision based version of our algorithm, called soft-subRPA, that not only improves upon the performance of subRPA but also enables a differentiable decoding algorithm. Building upon the soft-subRPA algorithm, we then provide a framework for training a machine learning (ML) model to search for \textit{good} sets of projections that minimize the decoding error rate. Training our ML model enables achieving very close to the performance of full-projection decoding with a significantly smaller number of projections. We also show that the choice of the projections in decoding RM subcodes matters significantly, and our ML-aided projection pruning scheme is able to find a \textit{good} selection, i.e., with negligible performance degradation compared to the full-projection case, given a reasonable number of projections.
Submission history
From: Mohammad Vahid Jamali [view email][v1] Mon, 16 Jan 2023 04:11:14 UTC (1,149 KB)
[v2] Tue, 1 Aug 2023 00:45:25 UTC (1,427 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.