Computer Science > Machine Learning
[Submitted on 16 Dec 2022]
Title:Do Not Trust a Model Because It is Confident: Uncovering and Characterizing Unknown Unknowns to Student Success Predictors in Online-Based Learning
View PDFAbstract:Student success models might be prone to develop weak spots, i.e., examples hard to accurately classify due to insufficient representation during model creation. This weakness is one of the main factors undermining users' trust, since model predictions could for instance lead an instructor to not intervene on a student in need. In this paper, we unveil the need of detecting and characterizing unknown unknowns in student success prediction in order to better understand when models may fail. Unknown unknowns include the students for which the model is highly confident in its predictions, but is actually wrong. Therefore, we cannot solely rely on the model's confidence when evaluating the predictions quality. We first introduce a framework for the identification and characterization of unknown unknowns. We then assess its informativeness on log data collected from flipped courses and online courses using quantitative analyses and interviews with instructors. Our results show that unknown unknowns are a critical issue in this domain and that our framework can be applied to support their detection. The source code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.