Computer Science > Computation and Language
[Submitted on 18 Nov 2022]
Title:Knowledge Graph Refinement based on Triplet BERT-Networks
View PDFAbstract:Knowledge graph embedding techniques are widely used for knowledge graph refinement tasks such as graph completion and triple classification. These techniques aim at embedding the entities and relations of a Knowledge Graph (KG) in a low dimensional continuous feature space. This paper adopts a transformer-based triplet network creating an embedding space that clusters the information about an entity or relation in the KG. It creates textual sequences from facts and fine-tunes a triplet network of pre-trained transformer-based language models. It adheres to an evaluation paradigm that relies on an efficient spatial semantic search technique. We show that this evaluation protocol is more adapted to a few-shot setting for the relation prediction task. Our proposed GilBERT method is evaluated on triplet classification and relation prediction tasks on multiple well-known benchmark knowledge graphs such as FB13, WN11, and FB15K. We show that GilBERT achieves better or comparable results to the state-of-the-art performance on these two refinement tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.