Computer Science > Information Retrieval
[Submitted on 17 Nov 2022]
Title:A Bird's-eye View of Reranking: from List Level to Page Level
View PDFAbstract:Reranking, as the final stage of multi-stage recommender systems, refines the initial lists to maximize the total utility. With the development of multimedia and user interface design, the recommendation page has evolved to a multi-list style. Separately employing traditional list-level reranking methods for different lists overlooks the inter-list interactions and the effect of different page formats, thus yielding suboptimal reranking performance. Moreover, simply applying a shared network for all the lists fails to capture the commonalities and distinctions in user behaviors on different lists. To this end, we propose to draw a bird's-eye view of \textbf{page-level reranking} and design a novel Page-level Attentional Reranking (PAR) model. We introduce a hierarchical dual-side attention module to extract personalized intra- and inter-list interactions. A spatial-scaled attention network is devised to integrate the spatial relationship into pairwise item influences, which explicitly models the page format. The multi-gated mixture-of-experts module is further applied to capture the commonalities and differences of user behaviors between different lists. Extensive experiments on a public dataset and a proprietary dataset show that PAR significantly outperforms existing baseline models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.