Nuclear Theory
[Submitted on 31 Oct 2022 (v1), last revised 14 Jun 2024 (this version, v4)]
Title:Wavefunction matching for solving quantum many-body problems
View PDF HTML (experimental)Abstract:Ab initio calculations play an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions to quantum chemistry and from atomic and molecular systems to nuclear physics. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing a new approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible due to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations of light nuclei, medium-mass nuclei, neutron matter, and nuclear matter. We use high-fidelity chiral effective field theory interactions and find good agreement with empirical data. These results are accompanied by new insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii, and nuclear matter saturation in ab initio calculations.
Submission history
From: Serdar Elhatisari [view email][v1] Mon, 31 Oct 2022 17:12:43 UTC (1,127 KB)
[v2] Tue, 22 Nov 2022 15:23:57 UTC (3,263 KB)
[v3] Thu, 13 Jun 2024 12:54:56 UTC (1,130 KB)
[v4] Fri, 14 Jun 2024 14:45:28 UTC (1,136 KB)
Current browse context:
nucl-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.