Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 22 Oct 2022 (v1), last revised 19 Jul 2023 (this version, v4)]
Title:MS-DCANet: A Novel Segmentation Network For Multi-Modality COVID-19 Medical Images
View PDFAbstract:The Coronavirus Disease 2019 (COVID-19) pandemic has increased the public health burden and brought profound disaster to humans. For the particularity of the COVID-19 medical images with blurred boundaries, low contrast and different infection sites, some researchers have improved the accuracy by adding more complexity. Also, they overlook the complexity of lesions, which hinder their ability to capture the relationship between segmentation sites and the background, as well as the edge contours and global context. However, increasing the computational complexity, parameters and inference speed is unfavorable for model transfer from laboratory to clinic. A perfect segmentation network needs to balance the above three factors completely. To solve the above issues, this paper propose a symmetric automatic segmentation framework named MS-DCANet. We introduce Tokenized MLP block, a novel attention scheme that use a shift-window mechanism to conditionally fuse local and global features to get more continuous boundaries and spatial positioning capabilities. It has greater understanding of irregular lesions contours. MS-DCANet also uses several Dual Channel blocks and a Res-ASPP block to improve the ability to recognize small targets. On multi-modality COVID-19 tasks, MS-DCANet achieved state-of-the-art performance compared with other baselines. It can well trade off the accuracy and complexity. To prove the strong generalization ability of our proposed model, we apply it to other tasks (ISIC 2018 and BAA) and achieve satisfactory results.
Submission history
From: XiaoYu Pan [view email][v1] Sat, 22 Oct 2022 05:51:52 UTC (2,589 KB)
[v2] Tue, 4 Apr 2023 01:05:39 UTC (12,329 KB)
[v3] Sat, 22 Apr 2023 09:25:32 UTC (6,375 KB)
[v4] Wed, 19 Jul 2023 06:54:25 UTC (15,501 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.