Quantum Physics
[Submitted on 20 Oct 2022 (v1), last revised 12 Jul 2023 (this version, v3)]
Title:Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride
View PDFAbstract:Optically active spin defects in van der Waals materials are promising platforms for modern quantum technologies. Here we investigate the coherent dynamics of strongly interacting ensembles of negatively charged boron-vacancy ($\mathrm{V}_{\mathrm{B}}^-$) centers in hexagonal boron nitride (hBN) with varying defect density. By employing advanced dynamical decoupling sequences to selectively isolate different dephasing sources, we observe more than 5-fold improvement in the measured coherence times across all hBN samples. Crucially, we identify that the many-body interaction within the $\mathrm{V}_{\mathrm{B}}^-$ ensemble plays a substantial role in the coherent dynamics, which is then used to directly estimate the concentration of $\mathrm{V}_{\mathrm{B}}^-$. We find that at high ion implantation dosage, only a small portion of the created boron vacancy defects are in the desired negatively charged state. Finally, we investigate the spin response of $\mathrm{V}_{\mathrm{B}}^-$ to the local charged defects induced electric field signals, and estimate its ground state transverse electric field susceptibility. Our results provide new insights on the spin and charge properties of $\mathrm{V}_{\mathrm{B}}^-$, which are important for future use of defects in hBN as quantum sensors and simulators.
Submission history
From: Ruotian Gong [view email][v1] Thu, 20 Oct 2022 18:00:00 UTC (2,032 KB)
[v2] Wed, 7 Jun 2023 17:49:57 UTC (2,839 KB)
[v3] Wed, 12 Jul 2023 18:52:34 UTC (2,839 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.