Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Oct 2022]
Title:A Codec Information Assisted Framework for Efficient Compressed Video Super-Resolution
View PDFAbstract:Online processing of compressed videos to increase their resolutions attracts increasing and broad attention. Video Super-Resolution (VSR) using recurrent neural network architecture is a promising solution due to its efficient modeling of long-range temporal dependencies. However, state-of-the-art recurrent VSR models still require significant computation to obtain a good performance, mainly because of the complicated motion estimation for frame/feature alignment and the redundant processing of consecutive video frames. In this paper, considering the characteristics of compressed videos, we propose a Codec Information Assisted Framework (CIAF) to boost and accelerate recurrent VSR models for compressed videos. Firstly, the framework reuses the coded video information of Motion Vectors to model the temporal relationships between adjacent frames. Experiments demonstrate that the models with Motion Vector based alignment can significantly boost the performance with negligible additional computation, even comparable to those using more complex optical flow based alignment. Secondly, by further making use of the coded video information of Residuals, the framework can be informed to skip the computation on redundant pixels. Experiments demonstrate that the proposed framework can save up to 70% of the computation without performance drop on the REDS4 test videos encoded by H.264 when CRF is 23.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.