Computer Science > Machine Learning
[Submitted on 27 Sep 2022]
Title:Formal Conceptual Views in Neural Networks
View PDFAbstract:Explaining neural network models is a challenging task that remains unsolved in its entirety to this day. This is especially true for high dimensional and complex data. With the present work, we introduce two notions for conceptual views of a neural network, specifically a many-valued and a symbolic view. Both provide novel analysis methods to enable a human AI analyst to grasp deeper insights into the knowledge that is captured by the neurons of a network. We test the conceptual expressivity of our novel views through different experiments on the ImageNet and Fruit-360 data sets. Furthermore, we show to which extent the views allow to quantify the conceptual similarity of different learning architectures. Finally, we demonstrate how conceptual views can be applied for abductive learning of human comprehensible rules from neurons. In summary, with our work, we contribute to the most relevant task of globally explaining neural networks models.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.