Computer Science > Sound
[Submitted on 24 Sep 2022]
Title:Speech Enhancement with Perceptually-motivated Optimization and Dual Transformations
View PDFAbstract:To address the monaural speech enhancement problem, numerous research studies have been conducted to enhance speech via operations either in time-domain on the inner-domain learned from the speech mixture or in time--frequency domain on the fixed full-band short time Fourier transform (STFT) spectrograms. Very recently, a few studies on sub-band based speech enhancement have been proposed. By enhancing speech via operations on sub-band spectrograms, those studies demonstrated competitive performances on the benchmark dataset of DNS2020. Despite attractive, this new research direction has not been fully explored and there is still room for improvement. As such, in this study, we delve into the latest research direction and propose a sub-band based speech enhancement system with perceptually-motivated optimization and dual transformations, called PT-FSE. Specially, our proposed PT-FSE model improves its backbone, a full-band and sub-band fusion model, by three efforts. First, we design a frequency transformation module that aims to strengthen the global frequency correlation. Then a temporal transformation is introduced to capture long range temporal contexts. Lastly, a novel loss, with leverage of properties of human auditory perception, is proposed to facilitate the model to focus on low frequency enhancement. To validate the effectiveness of our proposed model, extensive experiments are conducted on the DNS2020 dataset. Experimental results show that our PT-FSE system achieves substantial improvements over its backbone, but also outperforms the current state-of-the-art while being 27\% smaller than the SOTA. With average NB-PESQ of 3.57 on the benchmark dataset, our system offers the best speech enhancement results reported till date.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.