Computer Science > Information Theory
[Submitted on 23 Sep 2022 (v1), last revised 9 Jan 2024 (this version, v2)]
Title:Coding-Enhanced Cooperative Jamming for Secret Communication: The MIMO Case
View PDF HTML (experimental)Abstract:This paper considers a Gaussian multi-input multi-output (MIMO) wiretap channel with a legitimate transmitter, a legitimate receiver (Bob), an eavesdropper (Eve), and a cooperative jammer. All nodes may be equipped with multiple antennas. Traditionally, the jammer transmits Gaussian noise (GN) to enhance the security. However, using this approach, the jamming signal interferes not only with Eve but also with Bob. In this paper, besides the GN strategy, we assume that the jammer can also choose to use the encoded jammer (EJ) strategy, i.e., instead of GN, it transmits a codeword from an appropriate codebook. In certain conditions, the EJ scheme enables Bob to decode the jamming codeword and thus cancel the interference, while Eve remains unable to do so even if it knows all the codebooks. We first derive an inner bound on the system's secrecy rate under the strong secrecy metric, and then consider the maximization this bound through precoder design in a computationally efficient manner. In the single-input multi-output (SIMO) case, we prove that although non-convex, the power control problems can be optimally solved for both GN and EJ schemes. In the MIMO case, we propose to solve the problems using the matrix simultaneous diagonalization (SD) technique, which requires quite a low computational complexity. Simulation results show that by introducing a cooperative jammer with coding capability, and allowing it to switch between the GN and EJ schemes, a dramatic increase in the secrecy rate can be achieved. In addition, the proposed algorithms can significantly outperform the current state of the art benchmarks in terms of both secrecy rate and computation time.
Submission history
From: Hao Xu [view email][v1] Fri, 23 Sep 2022 07:57:25 UTC (88 KB)
[v2] Tue, 9 Jan 2024 14:50:03 UTC (141 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.