Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 9 Sep 2022 (v1), last revised 14 Apr 2023 (this version, v2)]
Title:Constraining νΛCDM with density-split clustering
View PDFAbstract:The dependence of galaxy clustering on local density provides an effective method for extracting non-Gaussian information from galaxy surveys. The two-point correlation function (2PCF) provides a complete statistical description of a Gaussian density field. However, the late-time density field becomes non-Gaussian due to non-linear gravitational evolution and higher-order summary statistics are required to capture all of its cosmological information. Using a Fisher formalism based on halo catalogues from the Quijote simulations, we explore the possibility of retrieving this information using the density-split clustering (DS) method, which combines clustering statistics from regions of different environmental density. We show that DS provides more precise constraints on the parameters of the $\nu \Lambda$CDM model compared to the 2PCF, and we provide suggestions for where the extra information may come from. DS improves the constraints on the sum of neutrino masses by a factor of $7$ and by factors of 4, 3, 3, 6, and 5 for $\Omega_{\rm m}$, $\Omega_{\rm b}$, $h$, $n_s$, and $\sigma_8$, respectively. We compare DS statistics when the local density environment is estimated from the real or redshift-space positions of haloes. The inclusion of DS autocorrelation functions, in addition to the cross-correlation functions between DS environments and haloes, recovers most of the information that is lost when using the redshift-space halo positions to estimate the environment. We discuss the possibility of constructing simulation-based methods to model DS clustering statistics in different scenarios.
Submission history
From: Enrique Paillas [view email][v1] Fri, 9 Sep 2022 14:09:47 UTC (9,352 KB)
[v2] Fri, 14 Apr 2023 21:50:46 UTC (9,754 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.