Computer Science > Machine Learning
[Submitted on 17 Aug 2022]
Title:NET-FLEET: Achieving Linear Convergence Speedup for Fully Decentralized Federated Learning with Heterogeneous Data
View PDFAbstract:Federated learning (FL) has received a surge of interest in recent years thanks to its benefits in data privacy protection, efficient communication, and parallel data processing. Also, with appropriate algorithmic designs, one could achieve the desirable linear speedup for convergence effect in FL. However, most existing works on FL are limited to systems with i.i.d. data and centralized parameter servers and results on decentralized FL with heterogeneous datasets remains limited. Moreover, whether or not the linear speedup for convergence is achievable under fully decentralized FL with data heterogeneity remains an open question. In this paper, we address these challenges by proposing a new algorithm, called NET-FLEET, for fully decentralized FL systems with data heterogeneity. The key idea of our algorithm is to enhance the local update scheme in FL (originally intended for communication efficiency) by incorporating a recursive gradient correction technique to handle heterogeneous datasets. We show that, under appropriate parameter settings, the proposed NET-FLEET algorithm achieves a linear speedup for convergence. We further conduct extensive numerical experiments to evaluate the performance of the proposed NET-FLEET algorithm and verify our theoretical findings.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.