Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Aug 2022]
Title:Instance Image Retrieval by Learning Purely From Within the Dataset
View PDFAbstract:Quality feature representation is key to instance image retrieval. To attain it, existing methods usually resort to a deep model pre-trained on benchmark datasets or even fine-tune the model with a task-dependent labelled auxiliary dataset. Although achieving promising results, this approach is restricted by two issues: 1) the domain gap between benchmark datasets and the dataset of a given retrieval task; 2) the required auxiliary dataset cannot be readily obtained. In light of this situation, this work looks into a different approach which has not been well investigated for instance image retrieval previously: {can we learn feature representation \textit{specific to} a given retrieval task in order to achieve excellent retrieval?} Our finding is encouraging. By adding an object proposal generator to generate image regions for self-supervised learning, the investigated approach can successfully learn feature representation specific to a given dataset for retrieval. This representation can be made even more effective by boosting it with image similarity information mined from the dataset. As experimentally validated, such a simple ``self-supervised learning + self-boosting'' approach can well compete with the relevant state-of-the-art retrieval methods. Ablation study is conducted to show the appealing properties of this approach and its limitation on generalisation across datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.