Mathematics > Numerical Analysis
[Submitted on 2 Aug 2022 (v1), last revised 20 Feb 2023 (this version, v2)]
Title:Solving singular generalized eigenvalue problems. Part II: projection and augmentation
View PDFAbstract:Generalized eigenvalue problems involving a singular pencil may be very challenging to solve, both with respect to accuracy and efficiency. While Part I presented a rank-completing addition to a singular pencil, we now develop two alternative methods. The first technique is based on a projection onto subspaces with dimension equal to the normal rank of the pencil while the second approach exploits an augmented matrix pencil. The projection approach seems to be the most attractive version for generic singular pencils because of its efficiency, while the augmented pencil approach may be suitable for applications where a linear system with the augmented pencil can be solved efficiently.
Submission history
From: Michiel Hochstenbach [view email][v1] Tue, 2 Aug 2022 11:05:58 UTC (56 KB)
[v2] Mon, 20 Feb 2023 18:45:57 UTC (57 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.