Computer Science > Information Theory
[Submitted on 30 Jul 2022]
Title:Joint Precoding and Phase Shift Design in Reconfigurable Intelligent Surfaces-Assisted Secret Key Generation
View PDFAbstract:Key generation is a promising technique to establish symmetric keys between resource-constrained legitimate users. However, key generation suffers from low secret key rate (SKR) in harsh environments where channel randomness is limited. To address the problem, reconfigurable intelligent surfaces (RISs) are introduced to reshape the channels by controlling massive reflecting elements, which can provide more channel diversity. In this paper, we design a channel probing protocol to fully extract the randomness from the cascaded channel, i.e., the channel through reflecting elements. We derive the analytical expressions of SKR and design a water-filling algorithm based on the Karush-Kuhn-Tucker (KKT) conditions to find the upper bound. To find the optimal precoding and phase shift matrices, we propose an algorithm based on the Grassmann manifold optimization methods. The system is evaluated in terms of SKR, bit disagreement rate (BDR) and randomness. Simulation results show that our protocols significantly improve the SKR as compared to existing protocol.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.