Computer Science > Computation and Language
[Submitted on 21 Jul 2022 (v1), last revised 1 Aug 2022 (this version, v2)]
Title:NusaCrowd: A Call for Open and Reproducible NLP Research in Indonesian Languages
View PDFAbstract:At the center of the underlying issues that halt Indonesian natural language processing (NLP) research advancement, we find data scarcity. Resources in Indonesian languages, especially the local ones, are extremely scarce and underrepresented. Many Indonesian researchers do not publish their dataset. Furthermore, the few public datasets that we have are scattered across different platforms, thus makes performing reproducible and data-centric research in Indonesian NLP even more arduous. Rising to this challenge, we initiate the first Indonesian NLP crowdsourcing effort, NusaCrowd. NusaCrowd strives to provide the largest datasheets aggregation with standardized data loading for NLP tasks in all Indonesian languages. By enabling open and centralized access to Indonesian NLP resources, we hope NusaCrowd can tackle the data scarcity problem hindering NLP progress in Indonesia and bring NLP practitioners to move towards collaboration.
Submission history
From: Samuel Cahyawijaya [view email][v1] Thu, 21 Jul 2022 15:05:42 UTC (9,572 KB)
[v2] Mon, 1 Aug 2022 16:55:04 UTC (9,572 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.