Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Jul 2022 (v1), last revised 20 Jul 2022 (this version, v2)]
Title:Brain-Aware Replacements for Supervised Contrastive Learning in Detection of Alzheimer's Disease
View PDFAbstract:We propose a novel framework for Alzheimer's disease (AD) detection using brain MRIs. The framework starts with a data augmentation method called Brain-Aware Replacements (BAR), which leverages a standard brain parcellation to replace medically-relevant 3D brain regions in an anchor MRI from a randomly picked MRI to create synthetic samples. Ground truth "hard" labels are also linearly mixed depending on the replacement ratio in order to create "soft" labels. BAR produces a great variety of realistic-looking synthetic MRIs with higher local variability compared to other mix-based methods, such as CutMix. On top of BAR, we propose using a soft-label-capable supervised contrastive loss, aiming to learn the relative similarity of representations that reflect how mixed are the synthetic MRIs using our soft labels. This way, we do not fully exhaust the entropic capacity of our hard labels, since we only use them to create soft labels and synthetic MRIs through BAR. We show that a model pre-trained using our framework can be further fine-tuned with a cross-entropy loss using the hard labels that were used to create the synthetic samples. We validated the performance of our framework in a binary AD detection task against both from-scratch supervised training and state-of-the-art self-supervised training plus fine-tuning approaches. Then we evaluated BAR's individual performance compared to another mix-based method CutMix by integrating it within our framework. We show that our framework yields superior results in both precision and recall for the AD detection task.
Submission history
From: Mehmet Saygin Seyfioglu [view email][v1] Mon, 11 Jul 2022 01:17:35 UTC (976 KB)
[v2] Wed, 20 Jul 2022 23:19:53 UTC (976 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.