Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 10 Jul 2022]
Title:Distributed-Memory Parallel Contig Generation for De Novo Long-Read Genome Assembly
View PDFAbstract:De novo genome assembly, i.e., rebuilding the sequence of an unknown genome from redundant and erroneous short sequences, is a key but computationally intensive step in many genomics pipelines. The exponential growth of genomic data is increasing the computational demand and requires scalable, high-performance approaches. In this work, we present a novel distributed-memory algorithm that, from a string graph representation of the genome and using sparse matrices, generates the contig set, i.e., overlapping sequences that form a map representing a region of a chromosome. Using matrix abstraction, we mask branches in the string graph and compute the connected component to group genomic sequences that belong to the same linear chain (i.e., contig). Then, we perform multiway number partitioning to minimize the load imbalance in local assembly, i.e., concatenation of sequences from a given contig. Based on the assignment obtained by partitioning, we compute the induce subgraph function to redistribute sequences between processes, resulting in a set of local sparse matrices. Finally, we traverse each matrix using depth-first search to concatenate sequences. Our algorithm shows good scaling with parallel efficiency up to 80% on 128 nodes, resulting in uniform genome coverage and showing promising results in terms of assembly quality. Our contig generation algorithm localizes the assembly process to significantly reduce the amount of computation spent on this step. Our work is a step forward for efficient de novo long read assembly of large genomes in a distributed memory.
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.