Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Jul 2022]
Title:SiaTrans: Siamese Transformer Network for RGB-D Salient Object Detection with Depth Image Classification
View PDFAbstract:RGB-D SOD uses depth information to handle challenging scenes and obtain high-quality saliency maps. Existing state-of-the-art RGB-D saliency detection methods overwhelmingly rely on the strategy of directly fusing depth information. Although these methods improve the accuracy of saliency prediction through various cross-modality fusion strategies, misinformation provided by some poor-quality depth images can affect the saliency prediction result. To address this issue, a novel RGB-D salient object detection model (SiaTrans) is proposed in this paper, which allows training on depth image quality classification at the same time as training on SOD. In light of the common information between RGB and depth images on salient objects, SiaTrans uses a Siamese transformer network with shared weight parameters as the encoder and extracts RGB and depth features concatenated on the batch dimension, saving space resources without compromising performance. SiaTrans uses the Class token in the backbone network (T2T-ViT) to classify the quality of depth images without preventing the token sequence from going on with the saliency detection task. Transformer-based cross-modality fusion module (CMF) can effectively fuse RGB and depth information. And in the testing process, CMF can choose to fuse cross-modality information or enhance RGB information according to the quality classification signal of the depth image. The greatest benefit of our designed CMF and decoder is that they maintain the consistency of RGB and RGB-D information decoding: SiaTrans decodes RGB-D or RGB information under the same model parameters according to the classification signal during testing. Comprehensive experiments on nine RGB-D SOD benchmark datasets show that SiaTrans has the best overall performance and the least computation compared with recent state-of-the-art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.