Computer Science > Databases
[Submitted on 8 Jul 2022 (v1), last revised 10 Oct 2022 (this version, v2)]
Title:Sudowoodo: Contrastive Self-supervised Learning for Multi-purpose Data Integration and Preparation
View PDFAbstract:Machine learning (ML) is playing an increasingly important role in data management tasks, particularly in Data Integration and Preparation (DI&P). The success of ML-based approaches, however, heavily relies on the availability of large-scale, high-quality labeled datasets for different tasks. Moreover, the wide variety of DI&P tasks and pipelines oftentimes requires customizing ML solutions which can incur a significant cost for model engineering and experimentation. These factors inevitably hold back the adoption of ML-based approaches to new domains and tasks.
In this paper, we propose Sudowoodo, a multi-purpose DI&P framework based on contrastive representation learning. Sudowoodo features a unified, matching-based problem definition capturing a wide range of DI&P tasks including Entity Matching (EM) in data integration, error correction in data cleaning, semantic type detection in data discovery, and more. Contrastive learning enables Sudowoodo to learn similarity-aware data representations from a large corpus of data items (e.g., entity entries, table columns) without using any labels. The learned representations can later be either directly used or facilitate fine-tuning with only a few labels to support different DI&P tasks. Our experiment results show that Sudowoodo achieves multiple state-of-the-art results on different levels of supervision and outperforms previous best specialized blocking or matching solutions for EM. Sudowoodo also achieves promising results in data cleaning and semantic type detection tasks showing its versatility in DI&P applications.
Submission history
From: Yuliang Li [view email][v1] Fri, 8 Jul 2022 20:45:49 UTC (918 KB)
[v2] Mon, 10 Oct 2022 21:40:02 UTC (912 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.