Computer Science > Machine Learning
[Submitted on 5 Jul 2022 (v1), last revised 31 Jul 2022 (this version, v3)]
Title:ICE-NODE: Integration of Clinical Embeddings with Neural Ordinary Differential Equations
View PDFAbstract:Early diagnosis of disease can lead to improved health outcomes, including higher survival rates and lower treatment costs. With the massive amount of information available in electronic health records (EHRs), there is great potential to use machine learning (ML) methods to model disease progression aimed at early prediction of disease onset and other outcomes. In this work, we employ recent innovations in neural ODEs combined with rich semantic embeddings of clinical codes to harness the full temporal information of EHRs. We propose ICE-NODE (Integration of Clinical Embeddings with Neural Ordinary Differential Equations), an architecture that temporally integrates embeddings of clinical codes and neural ODEs to learn and predict patient trajectories in EHRs. We apply our method to the publicly available MIMIC-III and MIMIC-IV datasets, and we find improved prediction results compared to state-of-the-art methods, specifically for clinical codes that are not frequently observed in EHRs. We also show that ICE-NODE is more competent at predicting certain medical conditions, like acute renal failure, pulmonary heart disease and birth-related problems, where the full temporal information could provide important information. Furthermore, ICE-NODE is also able to produce patient risk trajectories over time that can be exploited for further detailed predictions of disease evolution.
Submission history
From: Asem Alaa [view email][v1] Tue, 5 Jul 2022 08:13:46 UTC (1,121 KB)
[v2] Wed, 6 Jul 2022 19:57:55 UTC (884 KB)
[v3] Sun, 31 Jul 2022 22:56:13 UTC (885 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.