Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 May 2022 (v1), last revised 5 Jul 2023 (this version, v3)]
Title:A Comprehensive Handwritten Paragraph Text Recognition System: LexiconNet
View PDFAbstract:In this study, we have presented an efficient procedure using two state-of-the-art approaches from the literature of handwritten text recognition as Vertical Attention Network and Word Beam Search. The attention module is responsible for internal line segmentation that consequently processes a page in a line-by-line manner. At the decoding step, we have added a connectionist temporal classification-based word beam search decoder as a post-processing step. In this study, an end-to-end paragraph recognition system is presented with a lexicon decoder as a post-processing step. Our procedure reports state-of-the-art results on standard datasets. The reported character error rate is 3.24% on the IAM dataset with 27.19% improvement, 1.13% on RIMES with 40.83% improvement and 2.43% on the READ-16 dataset with 32.31% improvement from existing literature and the word error rate is 8.29% on IAM dataset with 43.02% improvement, 2.94% on RIMES dataset with 56.25% improvement and 7.35% on READ-2016 dataset with 47.27% improvement from the existing results. The character error rate and word error rate reported in this work surpass the results reported in the literature.
Submission history
From: Lalita Kumari [view email][v1] Mon, 23 May 2022 03:35:45 UTC (10,181 KB)
[v2] Sat, 29 Oct 2022 03:16:59 UTC (9,836 KB)
[v3] Wed, 5 Jul 2023 06:08:29 UTC (10,190 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.