Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Mar 2022 (v1), last revised 19 Jun 2022 (this version, v3)]
Title:BARC: Learning to Regress 3D Dog Shape from Images by Exploiting Breed Information
View PDFAbstract:Our goal is to recover the 3D shape and pose of dogs from a single image. This is a challenging task because dogs exhibit a wide range of shapes and appearances, and are highly articulated. Recent work has proposed to directly regress the SMAL animal model, with additional limb scale parameters, from images. Our method, called BARC (Breed-Augmented Regression using Classification), goes beyond prior work in several important ways. First, we modify the SMAL shape space to be more appropriate for representing dog shape. But, even with a better shape model, the problem of regressing dog shape from an image is still challenging because we lack paired images with 3D ground truth. To compensate for the lack of paired data, we formulate novel losses that exploit information about dog breeds. In particular, we exploit the fact that dogs of the same breed have similar body shapes. We formulate a novel breed similarity loss consisting of two parts: One term encourages the shape of dogs from the same breed to be more similar than dogs of different breeds. The second one, a breed classification loss, helps to produce recognizable breed-specific shapes. Through ablation studies, we find that our breed losses significantly improve shape accuracy over a baseline without them. We also compare BARC qualitatively to WLDO with a perceptual study and find that our approach produces dogs that are significantly more realistic. This work shows that a-priori information about genetic similarity can help to compensate for the lack of 3D training data. This concept may be applicable to other animal species or groups of species. Our code is publicly available for research purposes at this https URL.
Submission history
From: Nadine Rueegg [view email][v1] Tue, 29 Mar 2022 13:16:06 UTC (38,789 KB)
[v2] Wed, 30 Mar 2022 19:32:59 UTC (39,126 KB)
[v3] Sun, 19 Jun 2022 03:06:33 UTC (37,642 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.