Computer Science > Databases
[Submitted on 17 Mar 2022]
Title:SemTUI: a Framework for the Interactive Semantic Enrichment of Tabular Data
View PDFAbstract:The large availability of datasets fosters the use of \acrshort{ml} and \acrshort{ai} technologies to gather insights, study trends, and predict unseen behaviours out of the world of data. Today, gathering and integrating data from different sources is mainly a manual activity that requires the knowledge of expert users at an high cost in terms of both time and money. It is, therefore, necessary to make the process of gathering and linking data from many different sources affordable to make datasets ready to perform the desired analysis. In this work, we propose the development of a comprehensive framework, named SemTUI, to make the enrichment process flexible, complete, and effective through the use of semantics. The approach is to promote fast integration of external services to perform enrichment tasks such as reconciliation and extension; and to provide users with a graphical interface to support additional tasks, such as refinement to correct ambiguous results provided by automatic enrichment algorithms. A task-driven user evaluation proved SemTUI to be understandable, usable, and capable of achieving table enrichment with little effort and time with user tests that involved people with different skills and experiences.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.