Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Mar 2022]
Title:Occlusion-Aware Cost Constructor for Light Field Depth Estimation
View PDFAbstract:Matching cost construction is a key step in light field (LF) depth estimation, but was rarely studied in the deep learning era. Recent deep learning-based LF depth estimation methods construct matching cost by sequentially shifting each sub-aperture image (SAI) with a series of predefined offsets, which is complex and time-consuming. In this paper, we propose a simple and fast cost constructor to construct matching cost for LF depth estimation. Our cost constructor is composed by a series of convolutions with specifically designed dilation rates. By applying our cost constructor to SAI arrays, pixels under predefined disparities can be integrated and matching cost can be constructed without using any shifting operation. More importantly, the proposed cost constructor is occlusion-aware and can handle occlusions by dynamically modulating pixels from different views. Based on the proposed cost constructor, we develop a deep network for LF depth estimation. Our network ranks first on the commonly used 4D LF benchmark in terms of the mean square error (MSE), and achieves a faster running time than other state-of-the-art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.