Physics > Instrumentation and Detectors
[Submitted on 26 Nov 2021 (v1), last revised 18 Mar 2022 (this version, v2)]
Title:The Silicon Vertex Detector of the Belle II Experiment
View PDFAbstract:In 2019 the Belle II experiment started data taking at the asymmetric SuperKEKB collider (KEK, Japan) operating at the Y(4S) resonance. Belle II will search for new physics beyond the Standard Model by collecting an integrated luminosity of 50~ab$^{-1}$. The silicon vertex detector (SVD), consisting of four layers of double-sided silicon strip sensors, is one of the two vertex sub-detectors. The SVD extrapolates the tracks to the inner pixel detector (PXD) with enough precision to correctly identify hits in the PXD belonging to the track. In addition the SVD has standalone tracking capability and utilizes ionization to enhance particle identification in the low momentum region. The SVD is operating reliably and with high efficiency, despite exposure to the harsh beam background of the highest peak-luminosity collider ever built. High signal-to-noise ratio and hit efficiency have been measured, as well as the spatial resolution; all these quantities show excellent stability over time. Data-simulation agreement on cluster properties has recently been improved through a careful tuning of the simulation. The precise hit-time resolution can be exploited to reject out-of-time hits induced by beam background, which will make the SVD more robust against higher levels of background. During the first three years of running, radiation damage effects on strip noise, sensor currents and depletion voltage have been observed, as well as some coupling capacitor failure due to intense radiation bursts. None of these effects cause significant degradation in the detector performance.
Submission history
From: Giulio Dujany [view email][v1] Fri, 26 Nov 2021 14:11:55 UTC (563 KB)
[v2] Fri, 18 Mar 2022 08:42:11 UTC (684 KB)
Current browse context:
physics.ins-det
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.