Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Sep 2021]
Title:Multi-resolution deep learning pipeline for dense large scale point clouds
View PDFAbstract:Recent development of 3D sensors allows the acquisition of extremely dense 3D point clouds of large-scale scenes. The main challenge of processing such large point clouds remains in the size of the data, which induce expensive computational and memory cost. In this context, the full resolution cloud is particularly hard to process, and details it brings are rarely exploited. Although fine-grained details are important for detection of small objects, they can alter the local geometry of large structural parts and mislead deep learning networks. In this paper, we introduce a new generic deep learning pipeline to exploit the full precision of large scale point clouds, but only for objects that require details. The core idea of our approach is to split up the process into multiple sub-networks which operate on different resolutions and with each their specific classes to retrieve. Thus, the pipeline allows each class to benefit either from noise and memory cost reduction of a sub-sampling or from fine-grained details.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.