Mathematics > Numerical Analysis
[Submitted on 23 Sep 2021]
Title:Two-phase segmentation for intensity inhomogeneous images by the Allen-Cahn Local Binary Fitting Model
View PDFAbstract:This paper proposes a new variational model by integrating the Allen-Cahn term with a local binary fitting energy term for segmenting images with intensity inhomogeneity and noise. An inhomogeneous graph Laplacian initialization method (IGLIM) is developed to give the initial contour for two-phase image segmentation problems. To solve the Allen-Cahn equation derived from the variational model, we adopt the exponential time differencing (ETD) method for temporal discretization, and the central finite difference method for spatial discretization. The energy stability of proposed numerical schemes can be proved. Experiments on various images demonstrate the necessity and superiority of proper initialization and verify the capability of our model for two-phase segmentation of images with intensity inhomogeneity and noise.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.