Physics > Chemical Physics
[Submitted on 30 Mar 2021]
Title:Understanding Electrical Conduction and Nanopore Formation During Controlled Breakdown
View PDFAbstract:Controlled breakdown has recently emerged as a highly appealing technique to fabricate solid-state nanopores for a wide range of biosensing applications. This technique relies on applying an electric field of approximately 0.6-1 V/nm across the membrane to induce a current, and eventually, breakdown of the dielectric. However, a detailed description of how electrical conduction through the dielectric occurs during controlled breakdown has not yet been reported. Here, we study electrical conduction and nanopore formation in SiN$_x$ membranes during controlled breakdown. We show that depending on the membrane stoichiometry, electrical conduction is limited by either oxidation reactions that must occur at the membrane-electrolyte interface (Si-rich SiN$_x$), or electron transport across the dielectric (stoichiometric Si$_3$N$_4$). We provide several important implications resulting from understanding this process which will aid in further developing controlled breakdown in the coming years, particularly for extending this technique to integrate nanopores with on-chip nanostructures.
Current browse context:
physics.chem-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.