Quantitative Biology > Neurons and Cognition
[Submitted on 22 Jul 2020 (v1), last revised 17 Nov 2020 (this version, v2)]
Title:Liquid-crystal display (LCD) of achromatic, mean-modulated flicker in clinical assessment and experimental studies of visual systems
View PDFAbstract:Achromatic, mean-modulated flicker (wherein luminance increments and decrements of equal magnitude are applied, over time, to a test field) is commonly used in both clinical assessment of vision and experimental studies of visual systems. However, presenting flicker on computer-controlled displays is problematic; displays typically introduce luminance artifacts at high flicker frequency or contrast, potentially interfering with the validity of findings. Here, we present a battery of tests used to weigh the relative merits of two displays for presenting achromatic, mean-modulated flicker. These tests revealed marked differences between a new high-performance liquid-crystal display (LCD; EIZO ColorEdge CG247X) and a new consumer-grade LCD (Dell U2415b), despite displays' vendor-supplied specifications being almost identical. We measured displayed luminance using a spot meter and a linearized photodiode. We derived several measures, including spatial uniformity, the effect of viewing angle, response times, Fourier amplitude spectra, and cycle-averaged luminance. We presented paired luminance pulses to quantify the displays' nonlinear dynamics. The CG247X showed relatively good spatial uniformity (e.g., at moderate luminance, standard deviation 2.8% versus U2415b's 5.3%). Fourier transformation of nominally static test patches revealed spectra free of artifacts, with the exception of a frame response. The CG247X's rise and fall times depended on both the luminance from which, and to which, it responded, as is to be generally expected from LCDs. Despite this nonlinear behaviour, we were able to define a contrast and frequency range wherein the CG247X appeared largely artifact-free; the relationship between nominal luminance and displayed luminance was accurately modelled using a causal, linear time-invariant system. This range included contrasts up to 80%, and flicker frequencies up to 30 Hz.
Submission history
From: Luke Hallum [view email][v1] Wed, 22 Jul 2020 01:10:16 UTC (3,135 KB)
[v2] Tue, 17 Nov 2020 04:12:01 UTC (1,333 KB)
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.