Electrical Engineering and Systems Science > Signal Processing
[Submitted on 16 Jun 2020 (v1), last revised 4 Nov 2020 (this version, v3)]
Title:Aerial Platforms with Reconfigurable Smart Surfaces for 5G and Beyond
View PDFAbstract:Aerial platforms are expected to deliver enhanced and seamless connectivity in the fifth generation (5G) wireless networks and beyond (B5G). This is generally achievable by supporting advanced onboard communication features embedded in heavy and energy-intensive equipment. Alternatively, reconfigurable smart surfaces (RSS), which smartly exploit/recycle signal reflections in the environment, are increasingly being recognized as a new wireless communication paradigm to improve communication links. In fact, their reduced cost, low power use, light weight, and flexible deployment make them an attractive candidate for integration with 5G/B5G technologies. In this article, we discuss comprehensive approaches to the integration of RSS in aerial platforms. First, we present a review of RSS technology, its operations and types of communication. Next, we describe how RSS can be used in aerial platforms, and we propose a control architecture workflow. Then, several potential use cases are presented and discussed. Finally, associated research challenges are identified.
Submission history
From: Safwan Alfattani [view email][v1] Tue, 16 Jun 2020 17:10:59 UTC (4,269 KB)
[v2] Mon, 31 Aug 2020 18:17:39 UTC (4,616 KB)
[v3] Wed, 4 Nov 2020 19:37:27 UTC (6,835 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.