Nonlinear Sciences > Chaotic Dynamics
[Submitted on 7 May 2020 (v1), last revised 28 Aug 2020 (this version, v2)]
Title:Coherent dynamics in frustrated coupled parametric oscillators
View PDFAbstract:We explore the coherent dynamics in a small network of three coupled parametric oscillators and demonstrate the effect of frustration on the persistent beating between them. Since a single-mode parametric oscillator represents an analog of a classical Ising spin, networks of coupled parametric oscillators are considered as simulators of Ising spin models, aiming to efficiently calculate the ground state of an Ising network - a computationally hard problem. However, the coherent dynamics of coupled parametric oscillators can be considerably richer than that of Ising spins, depending on the nature of the coupling between them (energy preserving or dissipative), as was recently shown for two coupled parametric oscillators. In particular, when the energy-preserving coupling is dominant, the system displays everlasting coherent beats, transcending the Ising description. Here, we extend these findings to three coupled parametric oscillators, focusing in particular on the effect of frustration of the dissipative coupling. We theoretically analyze the dynamics using coupled nonlinear Mathieu's equations, and corroborate our theoretical findings by a numerical simulation that closely mimics the dynamics of the system in an actual experiment. Our main finding is that frustration drastically modifies the dynamics. While in the absence of frustration the system is analogous to the two-oscillator case, frustration reverses the role of the coupling completely, and beats are found for small energy-preserving couplings.
Submission history
From: Marcello Calvanese Strinati [view email][v1] Thu, 7 May 2020 15:51:21 UTC (1,724 KB)
[v2] Fri, 28 Aug 2020 07:51:30 UTC (1,724 KB)
Current browse context:
nlin.CD
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.