Nuclear Experiment
[Submitted on 13 Jan 2020 (v1), last revised 24 Jun 2021 (this version, v2)]
Title:Longitudinal flow decorrelations in Xe+Xe collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV with the ATLAS detector
View PDFAbstract:The first measurement of longitudinal decorrelations of harmonic flow amplitudes $v_n$ for $n=2$, 3 and 4 in Xe+Xe collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV is obtained using 3 ${\mu}\textrm{b}^{-1}$ of data with the ATLAS detector at the LHC. The decorrelation signal for $v_3$ and $v_4$ is found to be nearly independent of collision centrality and transverse momentum ($p_{\mathrm{T}}$) requirements on final-state particles, but for $v_2$ a strong centrality and $p_{\mathrm{T}}$ dependence is seen. When compared with the results from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV, the longitudinal decorrelation signal in mid-central Xe+Xe collisions is found to be larger for $v_2$, but smaller for $v_3$. Current hydrodynamic models reproduce the ratios of the $v_n$ measured in Xe+Xe collisions to those in Pb+Pb collisions but fail to describe the magnitudes and trends of the ratios of longitudinal flow decorrelations between Xe+Xe and Pb+Pb. The results on the system-size dependence provide new insights and an important lever-arm to separate effects of the longitudinal structure of the initial state from other early-time and late-time effects in heavy-ion collisions.
Submission history
From: The ATLAS Collaboration [view email][v1] Mon, 13 Jan 2020 13:01:17 UTC (412 KB)
[v2] Thu, 24 Jun 2021 08:02:43 UTC (431 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.