Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Nov 2018]
Title:Examining Performance of Sketch-to-Image Translation Models with Multiclass Automatically Generated Paired Training Data
View PDFAbstract:Image translation is a computer vision task that involves translating one representation of the scene into another. Various approaches have been proposed and achieved highly desirable results. Nevertheless, its accomplishment requires abundant paired training data which are expensive to acquire. Therefore, models for translation are usually trained on a set of paired training data which are carefully and laboriously designed. Our work is focused on learning through automatically generated paired data. We propose a method to generate fake sketches from images using an adversarial network and then pair the images with corresponding fake sketches to form large-scale multi-class paired training data for training a sketch-to-image translation model. Our model is an encoder-decoder architecture where the encoder generates fake sketches from images and the decoder performs sketch-to-image translation. Qualitative results show that the encoder can be used for generating large-scale multi-class paired data under low supervision. Our current dataset now contains 61255 image and (fake) sketch pairs from 256 different categories. These figures can be greatly increased in the future thanks to our weak reliance on manually labeled data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.