Statistics > Machine Learning
[Submitted on 23 Aug 2018 (v1), last revised 8 Feb 2019 (this version, v4)]
Title:Caveats for information bottleneck in deterministic scenarios
View PDFAbstract:Information bottleneck (IB) is a method for extracting information from one random variable $X$ that is relevant for predicting another random variable $Y$. To do so, IB identifies an intermediate "bottleneck" variable $T$ that has low mutual information $I(X;T)$ and high mutual information $I(Y;T)$. The "IB curve" characterizes the set of bottleneck variables that achieve maximal $I(Y;T)$ for a given $I(X;T)$, and is typically explored by maximizing the "IB Lagrangian", $I(Y;T) - \beta I(X;T)$. In some cases, $Y$ is a deterministic function of $X$, including many classification problems in supervised learning where the output class $Y$ is a deterministic function of the input $X$. We demonstrate three caveats when using IB in any situation where $Y$ is a deterministic function of $X$: (1) the IB curve cannot be recovered by maximizing the IB Lagrangian for different values of $\beta$; (2) there are "uninteresting" trivial solutions at all points of the IB curve; and (3) for multi-layer classifiers that achieve low prediction error, different layers cannot exhibit a strict trade-off between compression and prediction, contrary to a recent proposal. We also show that when $Y$ is a small perturbation away from being a deterministic function of $X$, these three caveats arise in an approximate way. To address problem (1), we propose a functional that, unlike the IB Lagrangian, can recover the IB curve in all cases. We demonstrate the three caveats on the MNIST dataset.
Submission history
From: Artemy Kolchinsky [view email][v1] Thu, 23 Aug 2018 00:13:18 UTC (782 KB)
[v2] Mon, 19 Nov 2018 07:58:05 UTC (770 KB)
[v3] Fri, 18 Jan 2019 20:56:54 UTC (474 KB)
[v4] Fri, 8 Feb 2019 19:22:40 UTC (453 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.