Mathematics > Combinatorics
[Submitted on 16 Nov 2015 (v1), last revised 23 Apr 2019 (this version, v4)]
Title:Slicings of parallelogram polyominoes: Catalan, Schröder, Baxter, and other sequences
View PDFAbstract:We provide a new succession rule (i.e. generating tree) associated with Schröder numbers, that interpolates between the known succession rules for Catalan and Baxter numbers. We define Schröder and Baxter generalizations of parallelogram polyominoes, called slicings, which grow according to these succession rules. In passing, we also exhibit Schröder subclasses of Baxter classes, namely a Schröder subset of triples of non-intersecting lattice paths, a new Schröder subset of Baxter permutations, and a new Schröder subset of mosaic floorplans. Finally, we define two families of subclasses of Baxter slicings: the $m$-skinny slicings and the $m$-row-restricted slicings, for $m \in \mathbb{N}$. Using functional equations and the kernel method, their generating functions are computed in some special cases, and we conjecture that they are algebraic for any $m$.
Submission history
From: Mathilde Bouvel [view email][v1] Mon, 16 Nov 2015 08:38:42 UTC (31 KB)
[v2] Mon, 21 Nov 2016 16:23:30 UTC (55 KB)
[v3] Fri, 7 Dec 2018 10:53:23 UTC (60 KB)
[v4] Tue, 23 Apr 2019 13:01:56 UTC (121 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.