Computer Science > Cryptography and Security
[Submitted on 28 Oct 2014]
Title:Data Driven Authentication: On the Effectiveness of User Behaviour Modelling with Mobile Device Sensors
View PDFAbstract:We propose a lightweight, and temporally and spatially aware user behaviour modelling technique for sensor-based authentication. Operating in the background, our data driven technique compares current behaviour with a user profile. If the behaviour deviates sufficiently from the established norm, actions such as explicit authentication can be triggered. To support a quick and lightweight deployment, our solution automatically switches from training mode to deployment mode when the user's behaviour is sufficiently learned. Furthermore, it allows the device to automatically determine a suitable detection threshold. We use our model to investigate practical aspects of sensor-based authentication by applying it to three publicly available data sets, computing expected times for training duration and behaviour drift. We also test our model with scenarios involving an attacker with varying knowledge and capabilities.
Submission history
From: Hilmi Gunes Kayacik [view email] [via Mike Just as proxy][v1] Tue, 28 Oct 2014 19:17:17 UTC (2,976 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.