Astrophysics > Instrumentation and Methods for Astrophysics
[Submitted on 6 Feb 2014]
Title:Performance of the Caltech Submillimeter Observatory Dual-Color 180-720 GHz Balanced SIS Receivers
View PDFAbstract:We report on balanced SIS receivers covering the astronomical important 180-720 GHz submillimeter atmospheric window. To facilitate remote observations and automated spectral line surveys, fully synthesized local oscillators are employed. High-current-density Nb-AlN-Nb superconducting-insulating-superconducting (SIS) tunnel junctions are used as the mixing element. The measured double-sideband (DSB) 230 GHz receiver noise temperature, uncorrected for optics loss, ranges from 50K at 185 GHz, 33K at 246 GHz, to 51K at 280 GHz. In this frequency range the mixer has a DSB conversion gain of 0 +- 1.5 dB. The measured 460 GHz double-sideband receiver noise temperature, uncorrected for optics loss, is 32K at 400 GHz, 34K at 460 GHz, and 61K at 520 GHz. Similar to the 230 GHz balanced mixer, the DSB mixer conversion gain is 1 +- 1 dB. To help optimize performance, the mixer IF circuits and bias injection are entirely planar by design. Dual-frequency observation, by means of separating the incoming circular polarized electric field into two orthogonal components, is another important mode of operation offered by the new facility instrumentation. Instrumental stability is excellent supporting the LO noise cancellation properties of the balanced mixer configuration. In the spring of 2012 the dual-frequency 230/460 SIS receiver was successfully installed at Caltech Submillimeter Observatory (CSO), Mauna Kea, HI.
Current browse context:
astro-ph.IM
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.