High Energy Physics - Theory
[Submitted on 21 Nov 2013 (v1), last revised 7 Feb 2014 (this version, v2)]
Title:Effects of Fluid Velocity Gradients on Heavy Quark Energy Loss
View PDFAbstract:We use holographic duality to analyze the drag force on, and consequent energy loss of, a heavy quark moving through a strongly coupled conformal fluid with non-vanishing gradients in its velocity and temperature. We derive the general expression for the drag force to first order in the fluid gradients. Using this general expression, we show that a quark that is instantaneously at rest, relative to the fluid, in a fluid whose velocity is changing with time feels a nonzero force. And, we show that for a quark that is moving ultra-relativistically, the first order gradient "corrections" become larger than the zeroth order drag force, suggesting that the gradient expansion may be unreliable in this regime. We illustrate the importance of the fluid gradients for heavy quark energy loss by considering a fluid with one-dimensional boost invariant Bjorken expansion as well as the strongly coupled plasma created by colliding sheets of energy.
Submission history
From: Mindaugas Lekaveckas [view email][v1] Thu, 21 Nov 2013 21:03:57 UTC (422 KB)
[v2] Fri, 7 Feb 2014 16:22:02 UTC (422 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.