Computer Science > Artificial Intelligence
[Submitted on 20 Jun 2012]
Title:A new parameter Learning Method for Bayesian Networks with Qualitative Influences
View PDFAbstract:We propose a new method for parameter learning in Bayesian networks with qualitative influences. This method extends our previous work from networks of binary variables to networks of discrete variables with ordered values. The specified qualitative influences correspond to certain order restrictions on the parameters in the network. These parameters may therefore be estimated using constrained maximum likelihood estimation. We propose an alternative method, based on the isotonic regression. The constrained maximum likelihood estimates are fairly complicated to compute, whereas computation of the isotonic regression estimates only requires the repeated application of the Pool Adjacent Violators algorithm for linear orders. Therefore, the isotonic regression estimator is to be preferred from the viewpoint of computational complexity. Through experiments on simulated and real data, we show that the new learning method is competitive in performance to the constrained maximum likelihood estimator, and that both estimators improve on the standard estimator.
Submission history
From: Ad Feelders [view email] [via AUAI proxy][v1] Wed, 20 Jun 2012 14:54:06 UTC (560 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.