Condensed Matter > Materials Science
[Submitted on 5 Nov 2010 (v1), last revised 17 Nov 2010 (this version, v2)]
Title:Ab Initio Local Density Approximation Description of the Electronic Properties of Zinc Blende Cadmium Sulfide (zb-CdS)
View PDFAbstract:Ab-initio, self-consistent electronic energy bands of zinc blende CdS are reported within the local density functional approximation (LDA). Our first principle, non-relativistic and ground state calculations employed a local density potential and the linear combination of atomic orbitals (LCAO). Within the framework of the Bagayoko, Zhao, and Williams (BZW) method, we solved self-consistently both the Kohn-Sham equation and the equation giving the ground state density in terms of the wave functions of the occupied states. Our calculated, direct band gap of 2.39 eV, at the point, is in accord with experiment. Our calculation reproduced the peaks in the conduction and valence bands density of states, within experimental uncertainties. The calculated electron effective mass agrees with experimental findings.
Submission history
From: Chinedu EKuma [view email][v1] Fri, 5 Nov 2010 02:26:54 UTC (199 KB)
[v2] Wed, 17 Nov 2010 02:06:13 UTC (199 KB)
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.