Condensed Matter > Superconductivity
[Submitted on 29 Oct 2010]
Title:Magnetic and Electronic Raman Scattering at the Nodal Spin-Density-Wave Transition in BaFe2As2
View PDFAbstract:Two magnon excitations and the nodal spin density wave (SDW) gap were observed in BaFe2As2 by Raman scattering. Below the SDW transition temperature (TSDW) nodal SDW gap opens together with new excitations in reconstructed electronic states. The two-magnon peak remains above TSDW and moreover the energy increases a little. The change from the long-range ordered state to the short-range correlated state is compared to the cuprate superconductors.
Current browse context:
cond-mat.supr-con
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.