Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 13 Oct 2010 (v1), last revised 27 Jan 2011 (this version, v3)]
Title:A Slight Excess of Large Scale Power from Moments of the Peculiar Velocity Field
View PDFAbstract:The peculiar motions of galaxies can be used to infer the distribution of matter in the Universe. It has recently been shown that measurements of the peculiar velocity field indicates an anomalously high bulk flow of galaxies in our local volume. In this paper we find the implications of the high bulk flow for the power spectrum of density fluctuations. We find that analyzing only the dipole moment of the velocity field yields an average power spectrum amplitude which is indeed much higher than the LCDM value. However, by also including shear and octupole moments of the velocity field, and marginalizing over possible values for the growth rate, an average power spectrum amplitude which is consistent with LCDM is recovered. We attempt to infer the shape of the matter power spectrum from moments of the velocity field, and find a slight excess of power on scales ~ h-1 Gpc.
Submission history
From: Edward Macaulay [view email][v1] Wed, 13 Oct 2010 13:02:10 UTC (462 KB)
[v2] Thu, 14 Oct 2010 15:34:05 UTC (144 KB)
[v3] Thu, 27 Jan 2011 15:06:41 UTC (142 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.