Computer Science > Data Structures and Algorithms
[Submitted on 9 Jan 2009 (v1), last revised 12 Sep 2012 (this version, v2)]
Title:Balanced allocation: Memory performance tradeoffs
View PDFAbstract:Suppose we sequentially put $n$ balls into $n$ bins. If we put each ball into a random bin then the heaviest bin will contain ${\sim}\log n/\log\log n$ balls with high probability. However, Azar, Broder, Karlin and Upfal [SIAM J. Comput. 29 (1999) 180--200] showed that if each time we choose two bins at random and put the ball in the least loaded bin among the two, then the heaviest bin will contain only ${\sim}\log\log n$ balls with high probability. How much memory do we need to implement this scheme? We need roughly $\log\log\log n$ bits per bin, and $n\log\log\log n$ bits in total. Let us assume now that we have limited amount of memory. For each ball, we are given two random bins and we have to put the ball into one of them. Our goal is to minimize the load of the heaviest bin. We prove that if we have $n^{1-\delta}$ bits then the heaviest bin will contain at least $\Omega(\delta\log n/\log\log n)$ balls with high probability. The bound is tight in the communication complexity model.
Submission history
From: Itai Benjamini [view email] [via VTEX proxy][v1] Fri, 9 Jan 2009 00:23:33 UTC (4 KB)
[v2] Wed, 12 Sep 2012 07:22:48 UTC (33 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.