[go: up one dir, main page]


Towards Optimal Depth-Reductions for Algebraic Formulas

Authors Hervé Fournier , Nutan Limaye , Guillaume Malod , Srikanth Srinivasan , Sébastien Tavenas



PDF
Thumbnail PDF

File

LIPIcs.CCC.2023.28.pdf
  • Filesize: 0.76 MB
  • 19 pages

Document Identifiers

Author Details

Hervé Fournier
  • Université Paris Cité, IMJ-PRG, France
Nutan Limaye
  • IT University Copenhagen, Denmark
Guillaume Malod
  • Université Paris Cité, IMJ-PRG, France
Srikanth Srinivasan
  • Aarhus University, Denmark
Sébastien Tavenas
  • Université Savoie Mont Blanc, CNRS, France

Cite AsGet BibTex

Hervé Fournier, Nutan Limaye, Guillaume Malod, Srikanth Srinivasan, and Sébastien Tavenas. Towards Optimal Depth-Reductions for Algebraic Formulas. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 28:1-28:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.CCC.2023.28

Abstract

Classical results of Brent, Kuck and Maruyama (IEEE Trans. Computers 1973) and Brent (JACM 1974) show that any algebraic formula of size s can be converted to one of depth O(log s) with only a polynomial blow-up in size. In this paper, we consider a fine-grained version of this result depending on the degree of the polynomial computed by the algebraic formula. Given a homogeneous algebraic formula of size s computing a polynomial P of degree d, we show that P can also be computed by an (unbounded fan-in) algebraic formula of depth O(log d) and size poly(s). Our proof shows that this result also holds in the highly restricted setting of monotone, non-commutative algebraic formulas. This improves on previous results in the regime when d is small (i.e., d = s^o(1)). In particular, for the setting of d = O(log s), along with a result of Raz (STOC 2010, JACM 2013), our result implies the same depth reduction even for inhomogeneous formulas. This is particularly interesting in light of recent algebraic formula lower bounds, which work precisely in this "low-degree" and "low-depth" setting. We also show that these results cannot be improved in the monotone setting, even for commutative formulas.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algebraic complexity theory
Keywords
  • Algebraic formulas
  • depth-reduction

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In proceedings of Foundations of Computer Science (FOCS), pages 67-75, 2008. URL: https://doi.org/10.1109/FOCS.2008.32.
  2. Maria Luisa Bonet and Samuel R. Buss. Size-depth tradeoffs for boolean formulae. Information Processing Letters, 49(3):151-155, 1994. URL: https://doi.org/10.1016/0020-0190(94)90093-0.
  3. R. Brent, D. Kuck, and K. Maruyama. The parallel evaluation of arithmetic expressions without division. IEEE Transactions on Computers, C-22(5):532-534, 1973. URL: https://doi.org/10.1109/T-C.1973.223757.
  4. Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the ACM, 21(2):201-206, April 1974. URL: https://doi.org/10.1145/321812.321815.
  5. Nader H. Bshouty, Richard Cleve, and Wayne Eberly. Size-depth tradeoffs for algebraic formulas. SIAM J. Comput., 24(4):682-705, 1995. URL: https://doi.org/10.1137/S0097539792232586.
  6. Peter Bürgisser. Cook’s versus Valiant’s hypothesis. Theoretical Computer Science, 235(1):71-88, 2000. Google Scholar
  7. Suryajith Chillara, Mrinal Kumar, Ramprasad Saptharishi, and V. Vinay. The chasm at depth four, and tensor rank: Old results, new insights. CoRR, abs/1606.04200, 2016. URL: https://arxiv.org/abs/1606.04200.
  8. Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth multilinear formula lower bounds for iterated matrix multiplication, with applications. In STACS, volume 96 of LIPIcs, pages 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. Google Scholar
  9. Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits: A chasm at depth 3. SIAM Journal of Computing, 45(3):1064-1079, 2016. URL: https://doi.org/10.1137/140957123.
  10. Pavel Hrubeš and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials. Comput. Complexity, 20(3):559-578, 2011. URL: https://doi.org/10.1007/s00037-011-0007-3.
  11. Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound for regular arithmetic formulas. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 146-153. ACM, 2014. URL: https://doi.org/10.1145/2591796.2591847.
  12. Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput. Sci., 448:56-65, 2012. URL: https://doi.org/10.1016/j.tcs.2012.03.041.
  13. S Rao Kosaraju. Parallel evaluation of division-free arithmetic equations. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pages 231-239, 1986. Google Scholar
  14. Mrinal Kumar, Rafael Mendes de Oliveira, and Ramprasad Saptharishi. Towards optimal depth reductions for syntactically multilinear circuits. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 78:1-78:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.78.
  15. Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds against low-depth algebraic circuits. Electron. Colloquium Comput. Complex., TR21-081, 2021. URL: https://eccc.weizmann.ac.il/report/2021/081.
  16. Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds against low-depth algebraic circuits. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804-814. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00083.
  17. Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the twenty-third annual ACM symposium on Theory of computing, pages 410-418, 1991. Google Scholar
  18. Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives. Computational Complexity, 6(3):217-234, 1997. URL: https://doi.org/10.1007/BF01294256.
  19. Franco P. Preparata and David E. Muller. The time required to evaluate division-free arithmetic expressions. Inf. Process. Lett., 3(5):144-146, 1975. URL: https://doi.org/10.1016/0020-0190(75)90028-9.
  20. Franco P. Preparata and David E. Muller. Efficient parallel evaluation of boolean expression. IEEE Trans. Computers, 25(5):548-549, 1976. URL: https://doi.org/10.1109/TC.1976.1674647.
  21. Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing, 2(1):121-135, 2006. URL: https://doi.org/10.4086/toc.2006.v002a006.
  22. Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. Journal of the ACM, 60(6):40:1-40:15, 2013. URL: https://doi.org/10.1145/2535928.
  23. Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Computational Complexity, 17(4):515-535, 2008. URL: https://doi.org/10.1007/s00037-008-0254-0.
  24. Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github survey, 2015. URL: https://github.com/dasarpmar/lowerbounds-survey/releases/.
  25. Eli Shamir and Marc Snir. On the depth complexity of formulas. Math. Syst. Theory, 13:301-322, 1980. URL: https://doi.org/10.1007/BF01744302.
  26. Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero. Computational Complexity, 10(1):1-27, 2001. Google Scholar
  27. Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science, 5:207-388, March 2010. URL: https://doi.org/10.1561/0400000039.
  28. Philip M. Spira. On time hardware complexity tradeoffs for Boolean functions. In Shu Lin, editor, Proceedings of the Fourth Hawaii International Conference on System Sciences, pages 525-527. Western Periodicals Company, North Hollywood, California, 1971. Google Scholar
  29. Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Information and Computation, 240:2-11, 2015. URL: https://doi.org/10.1016/j.ic.2014.09.004.
  30. Sébastien Tavenas, Nutan Limaye, and Srikanth Srinivasan. Set-multilinear and non-commutative formula lower bounds for iterated matrix multiplication. In STOC, pages 416-425. ACM, 2022. Google Scholar
  31. Leslie G. Valiant, Sven Skyum, Stuart J. Berkowitz, and Charles Rackoff. Fast Parallel Computation of Polynomials Using Few Processors. SIAM Journal of Computing, 12(4):641-644, 1983. URL: https://doi.org/10.1137/0212043.
  32. SV Yablonskii and VP Kozyrev. Mathematical problems of cybernetics. Information Materials of Scientific Council of Akad. Nauk SSSR on Complex Problem "Kibernetika", 19:3-15, 1968. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail