[1]
What Is Sand. URL: https://dailycivil.com/types-of-sand-used-in-construction-works-daily-civil/ (date of access: 27.02.2023)
Google Scholar
[2]
O. Rybalova, S. Artemiev, M. Sarapina, B. Tsymbal, A. Bakhareva, O. Shestopalov, O. Filenko, Development of methods for estimating the environmental risk of degradation of the surface water state, Eastern-European Journal of Enterprise Technologies, 2 (10 (92)) (2018) 4–17.
DOI: 10.15587/1729-4061.2018.127829
Google Scholar
[3]
S. Vambol, V. Vambol, O. Kondratenko, Y. Suchikova, O. Hurenko, Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization, Eastern-European Journal of Enterprise Technologies, 3 (10 (87)) (2017) 63–73.
DOI: 10.15587/1729-4061.2017.102314
Google Scholar
[4]
O. Vambol, A. Kondratiev, S. Purhina, М. Shevtsova, Determining the parameters for a 3D-printing process using the fused deposition modeling in order to manufacture an article with the required structural parameters, Eastern-European Journal of Enterprise Technologies, 2/1 (110) (2021) 70–80.
DOI: 10.15587/1729-4061.2021.227075
Google Scholar
[5]
B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, N. Maksymenko, R. Meleshchenko, Y. Bezuhla, I. Hrachova, R. Nesterenko, A. Shumilova, Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants, Eastern-European Journal of Enterprise Technologies, 4 (10) (2020) 37–44.
DOI: 10.15587/1729-4061.2020.210059
Google Scholar
[6]
O. Teslenko, A. Chernukha, O. Bezuglov, O. Bogatov, E. Kunitsa, V. Kalyna, A. Katunin, V. Kobzin, S. Minka, Construction of an algorithm for building regions of questionable decisions for devices containing gases in a linear multidimensional space of hazardous factors, EasternEuropean Journal of Enterprise Technologies, 5 (10 (101)) (2019) 42–48.
DOI: 10.15587/1729-4061.2019.181668
Google Scholar
[7]
Types of Sand used in Construction. URL: https://constrofacilitator.com/types-of-sand-used-in-construction/ (date of access: 27.02.2023)
Google Scholar
[8]
V. Golovanevskiy, A. Kondratiev, Elastic properties of steel-cord rubber conveyor belt, Experimental Techniques, 45, 2 (2021) 217–226.
DOI: 10.1007/s40799-021-00439-3
Google Scholar
[9]
Sand: Sources, Classification, Properties, Tests and Substitutes | Construction. URL: https://www.engineeringenotes.com/engineering-materials-2/sand/sand-sources-classification-properties-test-and-substitutes-construction/46490 (date of access: 27.02.2023)
Google Scholar
[10]
Y. Otrosh, A. Kovalov, O. Semkiv, I. Rudeshko,V. Diven, Methodology remaining lifetime determination of the building structures, MATEC Web of Conferences, 230 (02023) (2018).
DOI: 10.1051/matecconf/201823002023
Google Scholar
[11]
V. Loboichenko, A. Vasyukov, T. Tishakova, Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine, Asian Journal of Water, Environment and Pollution, 14 (4) (2017) P. 37–41.
DOI: 10.3233/ajw-170035
Google Scholar
[12]
V. Loboichenko, V. Strelec, The natural waters and aqueous solutions express-identification as element of determination of possible emergency situation, Water and Energy International, 61RNI (9) (2018) 43–50
Google Scholar
[13]
D. Dubinin et al., Investigation of the effect of carbon monoxide on people in case of fire in a building Testing action ugličnog monoxide on people in case fire in the building Safety, 62 (4) (2020) 347–357.
DOI: 10.31306/s.62.4.2
Google Scholar
[14]
V. Sadkovyi, V. Andronov, O. Semkiv, A. Kovalov, E. Rybka, Yu. Otrosh, et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180 (2021).
DOI: 10.15587/978-617-7319-43-5
Google Scholar
[15]
A. Chernukha, A. Сhernukha, K. Ostapov, T. Kurska, Investigation of the Processes of Formation of a Fire Retardant Coating, Materials Science Forum, 1038 (2021) 480–485.
DOI: 10.4028/www.scientific.net/msf.1038.480
Google Scholar
[16]
A. Kovalov, Y. Otrosh, S. Vedula, O. Danilin, T. Kovalevska, Parameters of fire-retardant coatings of steel constructions under the influence of climatic factors, Naukovyi Visnyk Natsionalnoho Hirnychoho University, 3 (2019) 46–53.
DOI: 10.29202/nvngu/2019-3/9
Google Scholar
[17]
O. Kondratenko, S. Vambol, O. Strokov, A. Avramenko, Mathematical model of the efficiency of diesel particulate matter filter, Naukovyi Visnyk Natsionalnoho Hirnychoho University, 6 (2015) 55–61.
Google Scholar
[18]
A. Panchenko, A. Voloshina, O. Boltyansky, I. Milaeva, I. Grechka, S. Khovanskyy, M. Svynarenko, O. Glibko, M. Maksimova, N. Paranyak, Designing the flow-through parts of distribution systems for the PRG series planetary hydraulic motors, Eastern-European Journal of Enterprise Technologies, 3 (1 (93)) (2018) 67–77.
DOI: 10.15587/1729-4061.2018.132504
Google Scholar
[19]
A. Pilipenko, H. Pancheva, A. Reznichenko, O. Myrgorod, N. Miroshnichenko, A. Sincheskul, The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide, Eastern-European Journal of Enterprise Technologies. 2 (1 (85)) (2017) 21–28.
DOI: 10.15587/1729-4061.2017.95989
Google Scholar
[20]
Yu. Otrosh, O. Semkiv, E. Rybka, A. Kovalov, About need of calculations for the steel framework building in conditions of temperature influences, IOP Conference Series: Materials Science and Engineering, 708 (1 (012065)) (2019).
DOI: 10.1088/1757-899x/708/1/012065
Google Scholar
[21]
K.V. Korytchenko et al., Enhancing the Fire Resistance of Concrete Structures by Applying Fire-Retardant Temperature-Resistant Metal Coatings , Materials Science Forum, 1038 (2021) 500–505.
DOI: 10.4028/www.scientific.net/msf.1038.500
Google Scholar
[22]
A. Chernukha, O. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition, Materials Science Forum, 1006 (2020) 70.
DOI: 10.4028/www.scientific.net/msf.1006.70
Google Scholar
[23]
K.V. Korytchenko et al., Advanced detonation gun application for aluminum oxide coating , Multidisciplinary journal "Functional Materials", 27 (1) (2020) 224–229.
Google Scholar
[24]
A. Kovalov, Y. Otrosh, O. Ostroverkh, O. Hrushovinchuk, O Savchenko, Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method, E3S Web of Conferences, 60 (00003) (2018).
DOI: 10.1051/e3sconf/20186000003
Google Scholar
[25]
A.N. Pavlov, Yu.I. Gol'Tsov, L.R. Mailyan, A.S. Makh, E.M. Shcherban, Dehydration factor upon activation of building sand by ultraviolet radiation, Materials Science and Engineering, 896 (2020) 1–6.
DOI: 10.1088/1757-899x/896/1/012123
Google Scholar
[26]
G. Jordan, C. Eulenkamp, E. Calzada, B. Schillinger, M. Hoelzel, A. Gigler, H. Stanjek, W. Schmahl, Quantitative in situ Study of the Dehydration of Bentonite-Bonded Molding Sands, Clays and Clay Minerals, 61 (2) 133–140.
DOI: 10.1346/ccmn.2013.0610210
Google Scholar
[27]
S. Hong, W. Um, Decontamination of neutron-activated radioactive concrete waste by separating Eu, Co, Fe, and Mn -containing sand particles using dense medium separation, Journal of Hazardous Materials, 443 (A) (2023).
DOI: 10.1016/j.jhazmat.2022.130183
Google Scholar
[28]
Y. Qiu, H. Pan, Q. Zhao, J. Zhang, Y. Zhang, W. Guo, Carbon dioxide-hardened sodium silicate-bonded sand regeneration using calcium carbide slag, The design and feasibility study, Journal of Environmental Chemical Engineering, 10 (2022).
DOI: 10.1016/j.jece.2022.107872
Google Scholar
[29]
J. Zhao, Z. Tan, X. Wang, Z. Zhou, G. Li, Engineering characteristics of water-bearing weakly cemented sandstone and dewatering technology in tunnel excavation, Tunneling and Underground Space Technology, 121 (2022) 36–51.
DOI: 10.1016/j.tust.2021.104316
Google Scholar
[30]
F. Milhomem, J. Medeiros da Luz, Modeling of Dewatering in Screens, XIII th International Mineral Processing Symposium, (2012) 893–901.
Google Scholar
[31]
A. Pham, M. Sillanpää, J. Virkutyte, Sludge dewatering by sand-drying bed coupled with electro-dewatering at various potentials, International Journal of Mining, Reclamation and Environment, (2009) 151–162.
DOI: 10.1080/17480930903132620
Google Scholar
[32]
D. Padmalal, K. Maya, River Sand Mining and Mining Methods, Sand Mining, (2014) 23–30.
DOI: 10.1007/978-94-017-9144-1_3
Google Scholar
[33]
R.M. Bhatawdekar, T.N. Singh, E.T. Mohamad, R. Jha, D.J. Armagahni, D. Zulaika Abang Hasbollah, Best river sand mining practices vis-a-vis alternative sand making methods for sustainability, Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering, (2022) 285–313.
DOI: 10.1016/b978-0-323-85698-0.00007-1
Google Scholar
[34]
H. Susanto, H. Setyobudi, D. Faturachman, E. Yandri, A. Hendiarko Priyatna, A. Daryus, V. Gaile, S.K. Wahono, R.K. Mahaswa, Maizirwan Mel, Analysis of the Sand Drying Process in the Biomass-Energized Rotary Drying Machine, Mechanical Engineering and Renewable Energy, 58 93–100.
DOI: 10.53560/ppasa(58-sp1)741
Google Scholar
[35]
A. Torres, M. Simoni, J. Keiding, Daniel Müller, S. Ermgassen, J. Liu, J. Jaeger, M. Winter, E. Lambin, Sustainability of the global sand system in the Anthropocene, One earth 4 (2021) 639–650.
DOI: 10.1016/j.oneear.2021.04.011
Google Scholar
[36]
Solving the Biggest Issues with Washing and Dewatering Sand. URL: https://www.agg-net.com/resources/articles/materials-processing/solving-the-biggest-issues-with-washing-and-dewatering-sand
Google Scholar