[go: up one dir, main page]

Study of Humidity During Sand Dewatering Using a Cone-Shaped Installation

Article Preview

Abstract:

The issue of moisture content of sand, which is used in construction as an aggregate for asphalt concrete mixtures, in the production of silicate building materials, roofing roll materials, and various types of glass, is considered. The results of an experimental study of the process of dewatering construction sand samples in conical warehouses under the conditions of using vacuum systems, depending on the time and placement scheme of needle filters, are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-51

Citation:

Online since:

August 2023

Export:

Price:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] What Is Sand. URL: https://dailycivil.com/types-of-sand-used-in-construction-works-daily-civil/ (date of access: 27.02.2023)

Google Scholar

[2] O. Rybalova, S. Artemiev, M. Sarapina, B. Tsymbal, A. Bakhareva, O. Shestopalov, O. Filenko, Development of methods for estimating the environmental risk of degradation of the surface water state, Eastern-European Journal of Enterprise Technologies, 2 (10 (92)) (2018) 4–17.

DOI: 10.15587/1729-4061.2018.127829

Google Scholar

[3] S. Vambol, V. Vambol, O. Kondratenko, Y. Suchikova, O. Hurenko, Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization, Eastern-European Journal of Enterprise Technologies, 3 (10 (87)) (2017) 63–73.

DOI: 10.15587/1729-4061.2017.102314

Google Scholar

[4] O. Vambol, A. Kondratiev, S. Purhina, М. Shevtsova, Determining the parameters for a 3D-printing process using the fused deposition modeling in order to manufacture an article with the required structural parameters, Eastern-European Journal of Enterprise Technologies, 2/1 (110) (2021) 70–80.

DOI: 10.15587/1729-4061.2021.227075

Google Scholar

[5] B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, N. Maksymenko, R. Meleshchenko, Y. Bezuhla, I. Hrachova, R. Nesterenko, A. Shumilova, Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants, Eastern-European Journal of Enterprise Technologies, 4 (10) (2020) 37–44.

DOI: 10.15587/1729-4061.2020.210059

Google Scholar

[6] O. Teslenko, A. Chernukha, O. Bezuglov, O. Bogatov, E. Kunitsa, V. Kalyna, A. Katunin, V. Kobzin, S. Minka, Construction of an algorithm for building regions of questionable decisions for devices containing gases in a linear multidimensional space of hazardous factors, EasternEuropean Journal of Enterprise Technologies, 5 (10 (101)) (2019) 42–48.

DOI: 10.15587/1729-4061.2019.181668

Google Scholar

[7] Types of Sand used in Construction. URL: https://constrofacilitator.com/types-of-sand-used-in-construction/ (date of access: 27.02.2023)

Google Scholar

[8] V. Golovanevskiy, A. Kondratiev, Elastic properties of steel-cord rubber conveyor belt, Experimental Techniques, 45, 2 (2021) 217–226.

DOI: 10.1007/s40799-021-00439-3

Google Scholar

[9] Sand: Sources, Classification, Properties, Tests and Substitutes | Construction. URL: https://www.engineeringenotes.com/engineering-materials-2/sand/sand-sources-classification-properties-test-and-substitutes-construction/46490 (date of access: 27.02.2023)

Google Scholar

[10] Y. Otrosh, A. Kovalov, O. Semkiv, I. Rudeshko,V. Diven, Methodology remaining lifetime determination of the building structures, MATEC Web of Conferences, 230 (02023) (2018).

DOI: 10.1051/matecconf/201823002023

Google Scholar

[11] V. Loboichenko, A. Vasyukov, T. Tishakova, Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine, Asian Journal of Water, Environment and Pollution, 14 (4) (2017) P. 37–41.

DOI: 10.3233/ajw-170035

Google Scholar

[12] V. Loboichenko, V. Strelec, The natural waters and aqueous solutions express-identification as element of determination of possible emergency situation, Water and Energy International, 61RNI (9) (2018) 43–50

Google Scholar

[13] D. Dubinin et al., Investigation of the effect of carbon monoxide on people in case of fire in a building Testing action ugličnog monoxide on people in case fire in the building Safety, 62 (4) (2020) 347–357.

DOI: 10.31306/s.62.4.2

Google Scholar

[14] V. Sadkovyi, V. Andronov, O. Semkiv, A. Kovalov, E. Rybka, Yu. Otrosh, et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180 (2021).

DOI: 10.15587/978-617-7319-43-5

Google Scholar

[15] A. Chernukha, A. Сhernukha, K. Ostapov, T. Kurska, Investigation of the Processes of Formation of a Fire Retardant Coating, Materials Science Forum, 1038 (2021) 480–485.

DOI: 10.4028/www.scientific.net/msf.1038.480

Google Scholar

[16] A. Kovalov, Y. Otrosh, S. Vedula, O. Danilin, T. Kovalevska, Parameters of fire-retardant coatings of steel constructions under the influence of climatic factors, Naukovyi Visnyk Natsionalnoho Hirnychoho University, 3 (2019) 46–53.

DOI: 10.29202/nvngu/2019-3/9

Google Scholar

[17] O. Kondratenko, S. Vambol, O. Strokov, A. Avramenko, Mathematical model of the efficiency of diesel particulate matter filter, Naukovyi Visnyk Natsionalnoho Hirnychoho University, 6 (2015) 55–61.

Google Scholar

[18] A. Panchenko, A. Voloshina, O. Boltyansky, I. Milaeva, I. Grechka, S. Khovanskyy, M. Svynarenko, O. Glibko, M. Maksimova, N. Paranyak, Designing the flow-through parts of distribution systems for the PRG series planetary hydraulic motors, Eastern-European Journal of Enterprise Technologies, 3 (1 (93)) (2018) 67–77.

DOI: 10.15587/1729-4061.2018.132504

Google Scholar

[19] A. Pilipenko, H. Pancheva, A. Reznichenko, O. Myrgorod, N. Miroshnichenko, A. Sincheskul, The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide, Eastern-European Journal of Enterprise Technologies. 2 (1 (85)) (2017) 21–28.

DOI: 10.15587/1729-4061.2017.95989

Google Scholar

[20] Yu. Otrosh, O. Semkiv, E. Rybka, A. Kovalov, About need of calculations for the steel framework building in conditions of temperature influences, IOP Conference Series: Materials Science and Engineering, 708 (1 (012065)) (2019).

DOI: 10.1088/1757-899x/708/1/012065

Google Scholar

[21] K.V. Korytchenko et al., Enhancing the Fire Resistance of Concrete Structures by Applying Fire-Retardant Temperature-Resistant Metal Coatings , Materials Science Forum, 1038 (2021) 500–505.

DOI: 10.4028/www.scientific.net/msf.1038.500

Google Scholar

[22] A. Chernukha, O. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition, Materials Science Forum, 1006 (2020) 70.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[23] K.V. Korytchenko et al., Advanced detonation gun application for aluminum oxide coating , Multidisciplinary journal "Functional Materials", 27 (1) (2020) 224–229.

Google Scholar

[24] A. Kovalov, Y. Otrosh, O. Ostroverkh, O. Hrushovinchuk, O Savchenko, Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method, E3S Web of Conferences, 60 (00003) (2018).

DOI: 10.1051/e3sconf/20186000003

Google Scholar

[25] A.N. Pavlov, Yu.I. Gol'Tsov, L.R. Mailyan, A.S. Makh, E.M. Shcherban, Dehydration factor upon activation of building sand by ultraviolet radiation, Materials Science and Engineering, 896 (2020) 1–6.

DOI: 10.1088/1757-899x/896/1/012123

Google Scholar

[26] G. Jordan, C. Eulenkamp, E. Calzada, B. Schillinger, M. Hoelzel, A. Gigler, H. Stanjek, W. Schmahl, Quantitative in situ Study of the Dehydration of Bentonite-Bonded Molding Sands, Clays and Clay Minerals, 61 (2) 133–140.

DOI: 10.1346/ccmn.2013.0610210

Google Scholar

[27] S. Hong, W. Um, Decontamination of neutron-activated radioactive concrete waste by separating Eu, Co, Fe, and Mn -containing sand particles using dense medium separation, Journal of Hazardous Materials, 443 (A) (2023).

DOI: 10.1016/j.jhazmat.2022.130183

Google Scholar

[28] Y. Qiu, H. Pan, Q. Zhao, J. Zhang, Y. Zhang, W. Guo, Carbon dioxide-hardened sodium silicate-bonded sand regeneration using calcium carbide slag, The design and feasibility study, Journal of Environmental Chemical Engineering, 10 (2022).

DOI: 10.1016/j.jece.2022.107872

Google Scholar

[29] J. Zhao, Z. Tan, X. Wang, Z. Zhou, G. Li, Engineering characteristics of water-bearing weakly cemented sandstone and dewatering technology in tunnel excavation, Tunneling and Underground Space Technology, 121 (2022) 36–51.

DOI: 10.1016/j.tust.2021.104316

Google Scholar

[30] F. Milhomem, J. Medeiros da Luz, Modeling of Dewatering in Screens, XIII th International Mineral Processing Symposium, (2012) 893–901.

Google Scholar

[31] A. Pham, M. Sillanpää, J. Virkutyte, Sludge dewatering by sand-drying bed coupled with electro-dewatering at various potentials, International Journal of Mining, Reclamation and Environment, (2009) 151–162.

DOI: 10.1080/17480930903132620

Google Scholar

[32] D. Padmalal, K. Maya, River Sand Mining and Mining Methods, Sand Mining, (2014) 23–30.

DOI: 10.1007/978-94-017-9144-1_3

Google Scholar

[33] R.M. Bhatawdekar, T.N. Singh, E.T. Mohamad, R. Jha, D.J. Armagahni, D. Zulaika Abang Hasbollah, Best river sand mining practices vis-a-vis alternative sand making methods for sustainability, Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering, (2022) 285–313.

DOI: 10.1016/b978-0-323-85698-0.00007-1

Google Scholar

[34] H. Susanto, H. Setyobudi, D. Faturachman, E. Yandri, A. Hendiarko Priyatna, A. Daryus, V. Gaile, S.K. Wahono, R.K. Mahaswa, Maizirwan Mel, Analysis of the Sand Drying Process in the Biomass-Energized Rotary Drying Machine, Mechanical Engineering and Renewable Energy, 58 93–100.

DOI: 10.53560/ppasa(58-sp1)741

Google Scholar

[35] A. Torres, M. Simoni, J. Keiding, Daniel Müller, S. Ermgassen, J. Liu, J. Jaeger, M. Winter, E. Lambin, Sustainability of the global sand system in the Anthropocene, One earth 4 (2021) 639–650.

DOI: 10.1016/j.oneear.2021.04.011

Google Scholar

[36] Solving the Biggest Issues with Washing and Dewatering Sand. URL: https://www.agg-net.com/resources/articles/materials-processing/solving-the-biggest-issues-with-washing-and-dewatering-sand

Google Scholar