[go: up one dir, main page]

Skip to main content
Log in

Numerical Analysis of Nanogap Effects in Metallic Nano-disk and Nano-sphere Dimers: High Near-field Enhancement with Large Gap Sizes

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Various gap sizes are investigated numerically to extract the local electric field enhancement from a gold sphere and disk dimer systems. Our simulations predict that a metallic disk dimer system(s) exhibit large local electric field enhancements at larger gap sizes (20 nm, 40 nm) as compared to that of sphere dimer designs (gap size = 8 nm, 14 nm). These gap size differences ~ 2.5 -3.3 times larger as compared to that of sphere dimer systems, facilitates the device fabrication. These numbers are obtained by the influence of uniform gap size distribution as a function of total volume “±Z direction”. Such geometry, by achieving good local electric field enhancement from larger gap size, will enhance the variety of potential applications in the field of plasmonics, sensors, single molecule detection, surface enhanced spectroscopy, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White and M. L. Brongersma, Nat. Mater. 9, 193 (2010).

    Article  ADS  Google Scholar 

  2. S. Lal, S. Link and N. J. Halas, Nat. Photonics 1, 641 (2007).

    Article  ADS  Google Scholar 

  3. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  Google Scholar 

  4. W. L. Barnes, A. Dereux and T. W. Ebbesen, Nature 424, 824 (2003).

    Article  ADS  Google Scholar 

  5. N. Jiang, X. Zhou and J. Wang, Chem. Rev. Article ASAP, A (2017).

    Google Scholar 

  6. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 8, 13 (2014).

    Article  ADS  Google Scholar 

  7. K. Saha, S. S. Agasti, C. Kim, X. Li and V. M. Rotello, Che. Rev. 112, 2739 (2012).

    Article  Google Scholar 

  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. V. Duyne, Nat. Mater. 7, 442 (2008).

    Article  ADS  Google Scholar 

  9. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).

    Article  ADS  Google Scholar 

  10. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam and Y. D. Suh, Nat. Mater. 9, 60 (2010).

    Article  ADS  Google Scholar 

  11. V. Devaraj, J. Baek, Y. Jang, H. Jeong and D. Lee, Opt. Express 24, 8045 (2016).

    Article  ADS  Google Scholar 

  12. S. C. Warren amd E. Thimsen, Energy Environ. Sci. 5, 5133 (2012).

    Article  Google Scholar 

  13. J. H. Park, G. V. Maltzhahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia and M. J. Sailor, P. Natl. Acad. Sci. USA. 107, 981 (2010).

    Article  ADS  Google Scholar 

  14. J. F. Li et al., Nature 464, 392 (2010).

    Article  ADS  Google Scholar 

  15. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe and R. P. V. Duyne, Mater. Today 15, 16 (2012).

    Article  Google Scholar 

  16. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim and S. W. Kim, Nature 453, 757 (2008).

    Article  ADS  Google Scholar 

  17. M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).

    Article  ADS  Google Scholar 

  18. F. J. G. Vidal and J. B. Pendry, Phys. Rev. Lett. 77, 1163 (1996).

    Article  ADS  Google Scholar 

  19. E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks and R. P. V. Duyne, J. Phys. Chem. C 114, 12511 (2010).

    Article  Google Scholar 

  20. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  Google Scholar 

  21. P. Norlander, C. Oubre, E. Prodan, K. Li and M. I. Stockman, Nano Lett. 4, 899 (2004).

    Article  ADS  Google Scholar 

  22. D. Radziuk and H. Moehwald, Phys. Chem. Chem. Phys. 17, 21072 (2015).

    Article  Google Scholar 

  23. S. Linic, U. Aslam, C. Boerigter and M. Morabito, Nat. Mater. 14, 567 (2015).

    Article  ADS  Google Scholar 

  24. S. S. Acimovic, M. P. Kreuzer, M. U. Gonzalez and R. Quidant, ACS Nano 3, 1231 (2009).

    Article  Google Scholar 

  25. C. Y. Tsai, J. W. Lin, C. Y. Wu, P. T. Lin, T. W. Lu and P. T. Lee, Nano Lett. 12, 1648 (2012).

    Article  ADS  Google Scholar 

  26. Y. Huang, Q. Zhou, M. Hou, L. Ma and Z. Zhang, Phys. Chem. Chem. Phys. 17, 29293 (2015).

    Article  Google Scholar 

  27. K. D. Osberg, M. Rycenga, N. Harris, A. L. Schmucker, M. R. Langille, G. C. Schatz and C. A. Mirkin, Nano Lett. 12, 3828 (2012).

    Article  ADS  Google Scholar 

  28. M. Rycenga, P. H. C. Camargo, W. Li, C. H. Morgan and Y. Xia, J. Phys. Chem. Lett. 1, 696 (2010).

    Article  Google Scholar 

  29. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang and B. Gu, Nano Lett. 10, 4952 (2010).

    Article  ADS  Google Scholar 

  30. J. M. McMahon, S. Li, L. K. Ausman and G. C. Schatz, J. Phy. Chem. C 116, 1627 (2012).

    Article  Google Scholar 

  31. J. Zuloaga, E. Prodan and P. Nordlander, Nano Lett. 9, 887 (2009).

    Article  ADS  Google Scholar 

  32. R. Esteban, A. G. Borisov, P. Nordlander and J. Aizpurua, Nat. Commun. 3, 825 (2012).

    Article  ADS  Google Scholar 

  33. B. K. Juluri, N. Chaturvedi, Q. Hao, M. Lu, D. Velegol, L. Jensen and T. J. Huang, ACS Nano 5, 5838 (2011).

    Article  Google Scholar 

  34. W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua and K. B. Crozier, Nat. Commun. 7, 11495 (2016).

    Article  ADS  Google Scholar 

  35. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang and H. Altug, Nano Lett. 10, 2511 (2010).

    Article  ADS  Google Scholar 

  36. W. Li, P. H. C. Camargo, X. Lu and Y. Xia, Nano Lett. 9, 485 (2009).

    Article  ADS  Google Scholar 

  37. S. L. Kleinman, B. Sharma, M. G. Blaber, A. I. henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz and R. P. V. Duyne, J. Am. Chem. Soc. 135, 301 (2013).

    Article  Google Scholar 

  38. K. L. Wustholz, A. I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz and R. P. V. Duyne, J. Am. Chem. Soc. 132, 10903 (2010).

    Article  Google Scholar 

  39. P. L. Stiles, J. A. Dieringer, N. C. Shah and R. P. V. Duyne, Annu. Rev. Anal. Chem. 1, 601 (2008).

    Article  Google Scholar 

  40. A. D. Rakic, A. B. Djurisic, J. M. Elazar and M. L. Majewski, Appl. Opt. 37, 5271 (1998).

    Article  ADS  Google Scholar 

  41. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

  42. J. Choi, S. H. Ji, C. S. Choi, J. W. Oh, F. S. Kim and N. Kim, Opt. Lett. 39, 4571 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devaraj, V., Choi, J., Kim, CS. et al. Numerical Analysis of Nanogap Effects in Metallic Nano-disk and Nano-sphere Dimers: High Near-field Enhancement with Large Gap Sizes. J. Korean Phys. Soc. 72, 599–603 (2018). https://doi.org/10.3938/jkps.72.599

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.599

Keywords

Navigation