[go: up one dir, main page]

\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New mission and opportunity for mathematics researchers: cryptography in the quantum era

  • *Corresponding author

    *Corresponding author 
Abstract / Introduction Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • This article introduces the NIST post-quantum cryptography standardization process. We highlight the challenges, discuss the mathematical problems in the proposed post-quantum cryptographic algorithms and the opportunities for mathematics researchers to contribute.

    Mathematics Subject Classification: Primary: 11T71, 14G50; Secondary: 94A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Security Categories

    Categories Security Description
    At least as hard to break as AES128 (exhaustive key search)
    At least as hard to break as SHA256 (collision search)
    At least as hard to break as AES192 (exhaustive key search)
    At least as hard to break as SHA384 (collision search)
    At least as hard to break as AES256 (exhaustive key search)
     | Show Table
    DownLoad: CSV

    Table 2.  Distribution of First Round Candidates

    Signature Encryption/KEM Overall
    Lattice-based 5 21 26
    Code-based 2 17 19
    Multivariate 7 2 9
    Symmetric/Hash-based 3 0 3
    Other 2 5 7
    Total 19 45 64
     | Show Table
    DownLoad: CSV

    Table 3.  Distribution of Second Round Candidates

    Signature Encryption/KEM Overall
    Lattice-based 3 9 12
    Code-based 0 7 7
    Multivariate 4 0 4
    Symmetric/Hash-based 2 0 2
    Other 0 1 1
    Total 9 17 26
     | Show Table
    DownLoad: CSV
  • [1] S. Aaronson, The limits of quantum computers, Scientific American, 4649 (2007), 4-4.  doi: 10.1007/978-3-540-74510-5_2.
    [2] L. Adleman, On breaking the titrated Merkle-Hellman public-key cryptosystem, in Advances in Cryptology: Crypto '82, Springer, (1982), 303–308.
    [3] Announcing request for nominations for public-key post-quantum cryptographic algorithms, Federal Register, 81 (2016), 92787–92788, Available at https://federalregister.gov/a/2016-30615.
    [4] E. Barker, L. Chen, A. Roginsky, A. Vassilev and R. Davis, Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography, NIST Special Publication (SP) 800-56A Revision 3, National Institute of Standards and Technology, Gaithersburg, Maryland, April 2018,141 pp. Available from: https://doi.org/10.6028/NIST.SP.800-56Ar3
    [5] E. Barker, L. Chen, A. Roginsky, A. Vassilev, R. Davis, S. Simon, Recommendation for Pair-Wise Key-Establishment Schemes Using Integer Factorization Cryptography, NIST Special Publication (SP) 800-56B Revision 1, National Institute of Standards and Technology, Gaithersburg, Maryland, September 2014,121 pp. Available from: https://doi.org/10.6028/NIST.SP.800-56Br1
    [6] E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. of Cryptology, 4 (1991), 3-72.  doi: 10.1007/BF00630563.
    [7] J. Buchmann, E. Dahmen and M. Szydlo, Hash-based digital signature schemes, in: Post-Quantum Cryptography (eds. D.J. Bernstein, J. Buchmann, E. Dahmen), Springer, Heidelberg, (2009), 35–93. doi: 10.1007/978-3-540-88702-7_3.
    [8] C. Gentry and M. Szydlo, Cryptanalysis of the revised NTRU signature scheme, in Proceedings of Eurocrypt 2002, Lect. Notes in Comput. Sci., Springer, 2332 (2002), 299–320. doi: 10.1007/3-540-46035-7_20.
    [9] L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of the 28th Annual ACM Symposium on Theory of Computation, (1996), 212–219. doi: 10.1145/237814.237866.
    [10] J. Hoffstein, J. Pipher and J. H. Silverman, NTRU: A ring-based public key cryptosystem, in Proceedings of ANTS '98 (ed. J. Buhler), Lect. Notes in Comput. Sci. Springer, 1423 (1998), 267–288. doi: 10.1007/BFb0054868.
    [11] R. McEliece, A public-key cryptosystem based on algebraic coding theory, DSN Progress Report, Jet Propulsion Laboratory, Pasadena, (1978), 42–44. Available at https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF.
    [12] D. Moody, Post-Quantum Cryptography Standardization: Announcement and outline of NIST's Call for Submissions, PQCrypto 2016, Fukuoka, Japan, February, (2016), 24–26, Available at https://csrc.nist.gov/Presentations/2016/Announcement-and-outline-of-NIST-s-Call-for-Submis.
    [13] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput., 26 (1997), 1484–1509, Available at: http://dx.doi.org/10.1137/s0036144598347011. doi: 10.1137/S0097539795293172.
    [14] U. S. Department of Commerce, Data Encryption Standard (DSS), Federal Information Processing Standards (FIPS) Publication 46–3, October 1999, 22 pp. Available from: https://csrc.nist.gov/CSRC/media/Publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf.
    [15] U. S. Department of Commerce, Secure Hash Standard (SHS), Federal Information Processing Standards (FIPS) Publication 180–4, August 2015, 31 pp. Available from: https://doi.org/10.6028/NIST.FIPS.180-4.
    [16] U. S. Department of Commerce, Digital Signature Standard (DSS), Federal Information Processing Standards (FIPS) Publication 186–4, July 2003,121 pp. Available from: https://doi.org/10.6028/NIST.FIPS.186-4.
    [17] U. S. Department of Commerce, Advanced Encryption Standard (AES), Federal Information Processing Standards (FIPS) Publication 197, November 2001, 47 pp. Available from: https://doi.org/10.6028/NIST.FIPS.197.
    [18] U. S. Department of Commerce, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards (FIPS) Publication 198–1, July 2008, 7 pp. Available from: https://doi.org/10.6028/NIST.FIPS.198-1.
    [19] U. S. Department of Commerce, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, Federal Information Processing Standards (FIPS) Publication 202, August 2015, 29 pp. Available from: https://doi.org/10.6028/NIST.FIPS.202.
    [20] First PQC Standardization Conference, Ft. Lauderdale, FL, April 11-13, 2018, Available at https://csrc.nist.gov/Events/2018/First-PQC-Standardization-Conference.
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(2905) PDF downloads(991) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return