[go: up one dir, main page]

\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A class of skew-cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ with derivation

  • * Corresponding author: Amit Sharma

    * Corresponding author: Amit Sharma 
Abstract / Introduction Full Text(HTML) Figure(1) / Table(2) Related Papers Cited by
  • In this paper, we study a class of skew-cyclic codes using a skew polynomial ring over $R = \mathbb{Z}_4+u\mathbb{Z}_4;u^2 = 1$, with an automorphism $θ$ and a derivation $δ_θ$. We generalize the notion of cyclic codes to skew-cyclic codes with derivation, and call such codes as $δ_θ$-cyclic codes. Some properties of skew polynomial ring $R[x, θ, {δ_θ}]$ are presented. A $δ_θ$-cyclic code is proved to be a left $R[x, θ, {δ_θ}]$-submodule of $\frac{R[x, θ, {δ_θ}]}{\langle x^n-1 \rangle}$. The form of a parity-check matrix of a free $δ_θ$-cyclic codes of even length $n$ is presented. These codes are further generalized to double $δ_θ$-cyclic codes over $R$. We have obtained some new good codes over $\mathbb{Z}_4$ via Gray images and residue codes of these codes. The new codes obtained have been reported and added to the database of $\mathbb{Z}_4$-codes [2].

    Mathematics Subject Classification: Primary: 94B05, 94B15, 11T71; Secondary: 12D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.   

    Table 1.  *: = Existing good code [2,1], **: = New good code

    $C$ $\Phi(C)$ $Res(C)$ $C^*$
    Set of generators Code $(n, 4^{k_1}2^{k_2}, d_L)$ $(n, 4^{k_1}2^{k_2}, d_L)$ $(n, 4^{k_1}2^{k_2}, d_L)$
    $\{g_1(x), xg_1(x), x^2g_1(x)\}$ $C_1$ ${(10, 4^6, 2)^{}}$ ${(5, 4^42^1, 2)^{*}}$ $\mathbf{(10, 4^82^2, 2)}^{**}$
    $\{g_2(x), xg_2(x), x^2g_2(x)\}$ $C_2$ ${(20, 4^6, 8)}$ $(10, 4^6, 4)^*$ $(20, 4^{12}, 4)^*$
    $\{g_3(x), xg_3(x), x^2g_3(x)\}$ $C_3$ ${(20, 4^6, 6)}$ $(10, 4^5, 6)^*$ $(20, 4^{10}, 6)$
    $\left\{ {{g_4}\left( x \right),x{g_4}\left( x \right),{x^2}{g_4}\left( x \right),{x^3}{g_4}\left( x \right)} \right\}$ $C_4$ ${(24, 4^8, 6)}$ $(12, 4^8, 4)^*$ $(24, 4^{16}, 4)^*$
    $\left\{ {{g_5}\left( x \right),x{g_5}\left( x \right),{x^2}{g_5}\left( x \right),{x^3}{g_5}\left( x \right)} \right\}$ $C_5$ ${(28, 4^8, 6)}$ $(14, 4^8, 5)^*$ $(28, 4^{16}, 5)^*$
    $\left\{ {{g_6}\left( x \right),x{g_6}\left( x \right),{x^2}{g_6}\left( x \right),{x^3}{g_6}\left( x \right)} \right\}$ $C_6$ ${(30, 4^8, 6)}$ $(15, 4^8, 6)^*$ $(30, 4^{16}, 6)$
    $\left\{ {{g_7}\left( x \right),x{g_7}\left( x \right),{x^2}{g_7}\left( x \right),{x^3}{g_7}\left( x \right)} \right\}$ $C_7$ ${(36, 4^8, 8)}$ $(18, 4^8, 8)^*$ $(36, 4^{16}, 8)^*$
     | Show Table
    DownLoad: CSV

    Table 2.  $^*$: = Existing good code [2,1], $^{**}$: = New good code;

    $C$ $\Phi(C)$ $Res(C)$ $C^*$
    Set of generators Name $(n, M, d_L)$ $(n, 4^{k_1}2^{k_2}, d_L)$ $(n, 4^{k_1}2^{k_2}, d_L)$
    $\{h_0(x), xh_1(x)\}$ $A_1$ ${(10,128, 2)^{}}$ ${(5, 4^32^1, 2)^{*}}$ $(10, 4^62^2, 2)$
    $\{h_1(x), xh_1(x), x^2h_1(x)\}$ $A_2$ ${(12, 4096, 2)^{}}$ ${(6, 4^52^1, 2)^{*}}$ $\mathbf{(12, 4^{10}2^2, 2)}^{**}$
    $\{h_2(x), xh_2(x), x^2h_2(x), x^3h_2(x)\}$ $A_3$ ${(14, 65536, 2)^{}}$ ${(7, 4^62^1, 2)^{*}}$ ${(14, 4^{12}2^2, 2)}$
    $\{h_3(x), xh_3(x), x^3h_2(x), x^3h_3(x)\}$ $A_3$ ${(16, 65536, 4)^{}}$ $\mathbf{(8, 4^7, 2)^{**}}$ $\mathbf{(16, 4^{14}, 2)}^{**}$
     | Show Table
    DownLoad: CSV
  •   M. Araya , M. Harada , H. Ito  and  K. Saito , On the classification of Z4-codes, Adv. Math. Commun., 11 (2017) , 747-756.  doi: 10.3934/amc.2017054.
      N. Aydin and T. Asamov, http://www.z4codes.info The database of Z4 codes (Accessed March, 2018).
      N. Aydin  and  T. Asamov , A database of Z4 codes, J. Comb. Inf. Syst. Sci., 34 (2009) , 1-12. 
      M. Bhaintwal , Skew quasi-cyclic codes over Galois rings, Des. Codes Cryptogr., 62 (2012) , 85-101.  doi: 10.1007/s10623-011-9494-0.
      I. F. Blake , Codes over certain rings, Information and Control., 20 (1972) , 396-404.  doi: 10.1016/S0019-9958(72)90223-9.
      I. F. Blake , Codes over integer residue rings, Information and Control., 29 (1975) , 295-300.  doi: 10.1016/S0019-9958(75)80001-5.
      W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of magma functions, Edition, 2 (2010), 5017 pages.
      D. Boucher  and  F. Ulmer , Coding with skew polynomial rings, J. of Symbolic Comput., 44 (2009) , 1644-1656.  doi: 10.1016/j.jsc.2007.11.008.
      D. Boucher , W. Geiselmann  and  F. Ulmer , Skew cyclic codes, Appl. Algebra Engrg. Comm. Comput., 18 (2007) , 379-389.  doi: 10.1007/s00200-007-0043-z.
      D. Boucher and F. Ulmer, Codes as modules over skew polynomial rings, In Proc. of 12th IMA International Conference, Cryptography and Coding, Cirencester, UK, LNCS, 5921 (2009), 38-55. doi: 10.1007/978-3-642-10868-6_3.
      D. Boucher , P. Sol$\acute{e}$  and  F. Ulmer , Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008) , 273-292.  doi: 10.3934/amc.2008.2.273.
      D. Boucher  and  F. Ulmer , Linear codes using skew polynomials with automorphisms and derivations, Des. Codes Cryptogr., 70 (2014) , 405-431.  doi: 10.1007/s10623-012-9704-4.
      S. T. Dougherty  and  K. Shiromoto , Maximum distance codes over rings of order 4, IEEE Trans. Info Theory, 47 (2001) , 400-404.  doi: 10.1109/18.904544.
      F. Gursoy , I. Siap  and  B. Yildiz , Construction of skew cyclic codes over $\mathbb{F}_q+v\mathbb{F}_q$, Adv. Math. Commum., 8 (2014) , 313-322.  doi: 10.3934/amc.2014.8.313.
      Jr. A. R. Hammons , P. V. Kumar , A. R. Calderbank , N. J. Sloane  and  P. Sol$\acute{e}$ , The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994) , 301-319.  doi: 10.1109/18.312154.
      S. Jitman , S. Ling  and  P. Udomkavanich , Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012) , 39-63.  doi: 10.3934/amc.2012.6.39.
      B. R. McDonald, Finite Rings with Identity, Marcel Dekker Inc, New York, 1974.
      M. Ozen , F. Z. Uzekmek , N. Aydin  and  N. T. Ozzaim , Cyclic and some constacyclic codes over the ring $\frac{Z_4[u]}{\langle u^2-1\rangle}$, Finite Fields Appl., 38 (2016) , 27-39.  doi: 10.1016/j.ffa.2015.12.003.
      E. Prange , Cyclic error-correcting codes in two symbols, Air Force Cambridge Research Center, Cambridge, MA, Tech. Rep. AFCRC-TN, (1957) , 57-103. 
      M. Shi , L. Qian , L. Sok , N. Aydin  and  P. Sole , On constacyclic codes over $\frac{Z_4[u]}{\langle u^2-1 \rangle}$ and their Gray images, Finite Fields Appl., 45 (2017) , 86-95.  doi: 10.1016/j.ffa.2016.11.016.
      I. Siap , T. Abualrub , N. Aydin  and  P. Seneviratne , Skew cyclic codes of arbitrary length, Int. J. Inf. Coding Theory, 2 (2011) , 10-20.  doi: 10.1504/IJICOT.2011.044674.
      E. Spiegel , Codes over $\mathbb{Z}_m$, Information and Control., 35 (1977) , 48-51.  doi: 10.1016/S0019-9958(77)90526-5.
      E. Spiegel , Codes over $\mathbb{Z}_m$ (revisited), Information and Control., 37 (1978) , 100-104.  doi: 10.1016/S0019-9958(78)90461-8.
      B. Yildiz  and  N. Aydin , On codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ and their $\mathbb{Z}_4$-images, Int. J. Inf. Coding Theory, 2 (2014) , 226-237.  doi: 10.1504/IJICOT.2014.066107.
      B. Yildiz  and  S. Karadeniz , Linear codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$: MacWilliams identities, projections, and formally self dual codes, Finite Fields Appl., 27 (2014) , 24-40.  doi: 10.1016/j.ffa.2013.12.007.
  • 加载中

Figures(1)

Tables(2)

SHARE

Article Metrics

HTML views(3323) PDF downloads(871) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return